• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1836001 (2022)
Jiawei Shen1, Na Sun2, Fangjian Xing1、*, Zixian Guo1, and Junpeng Shi1
Author Affiliations
  • 1School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, China
  • 2School of Physics and Technology, Nanjing Normal University, Nanjing 210023, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.1836001 Cite this Article Set citation alerts
    Jiawei Shen, Na Sun, Fangjian Xing, Zixian Guo, Junpeng Shi. [J]. Laser & Optoelectronics Progress, 2022, 59(18): 1836001 Copy Citation Text show less
    References

    [1] Izatt J A, Hee M R, Swanson E A et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography[J]. Archives of Ophthalmology, 112, 1584-1589(1994).

    [2] Srinivasan V J, Wojtkowski M, Fujimoto J G et al. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 31, 2308-2310(2006).

    [3] Wen X, Jacques S L, Tuchin V V et al. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging[J]. Journal of Biomedical Optics, 17, 066022(2012).

    [4] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express, 12, 2404-2422(2004).

    [5] Pan L H, Wang X Z, Li Z L et al. Depth-dependent dispersion compensation for full-depth OCT image[J]. Optics Express, 25, 10345-10354(2017).

    [6] Fercher A, Hitzenberger C, Sticker M et al. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography[J]. Optics Express, 9, 610-615(2001).

    [7] Hitzenberger C K, Baumgartner A, Drexler W et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging[J]. Journal of Biomedical Optics, 4, 144-151(1999).

    [8] Drexler W, Morgner U, Kärtner F X et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 24, 1221-1223(1999).

    [9] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).

    [10] Chen Y R, Sun B, Han T et al. Densely folded spectral images of a CCD spectrometer working in the full 200-1000 nm wavelength range with high resolution[J]. Optics Express, 13, 10049-10054(2005).

    [11] Makita S, Fabritius T, Yasuno Y. Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye[J]. Optics Express, 16, 8406-8420(2008).

    [12] Wu X C, Ye X R, Yu D et al. Spectrometer calibration with reduced dispersion for optical coherence tomography[J]. OSA Continuum, 3, 2156-2165(2020).

    [13] Chong S P, Merkle C W, Leahy C et al. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography[J]. Biomedical Optics Express, 6, 1429-1450(2015).

    [14] Wang K, Ding Z H. Spectral calibration in spectral domain optical coherence tomography[J]. Chinese Optics Letters, 6, 902-904(2008).

    [15] Xing F J, Lee J H, Polucha C et al. Design and optimization of line-field optical coherence tomography at visible wavebands[J]. Biomedical Optics Express, 12, 1351-1365(2021).

    Jiawei Shen, Na Sun, Fangjian Xing, Zixian Guo, Junpeng Shi. [J]. Laser & Optoelectronics Progress, 2022, 59(18): 1836001
    Download Citation