• Opto-Electronic Advances
  • Vol. 2, Issue 6, 190001 (2019)
Pei Hang He1, Hao Chi Zhang2, Xinxin Gao1, Ling Yun1, Wen Xuan Tang1, Jiayuan Lu1, Le Peng Zhang1, and Tie Jun Cui1、*
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 2School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
  • show less
    DOI: 10.29026/oea.2019.190001 Cite this Article
    Pei Hang He, Hao Chi Zhang, Xinxin Gao, Ling Yun, Wen Xuan Tang, Jiayuan Lu, Le Peng Zhang, Tie Jun Cui. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2019, 2(6): 190001 Copy Citation Text show less
    References

    [1] W L Barnes, A Dereux, T W Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] A C Jones, R L Olmon, S E Skrabalak, B J Wiley, Y N Xia et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Lett, 9, 2553-2558(2009).

    [3] N Fang, H Lee, C Sun, X Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [4] J N Anker, W P Hall, O Lyandres, N C Shah, J Zhao et al. Biosensing with plasmonic nanosensors. Nat Mater, 7, 442-453(2008).

    [5] A Polman, H A Atwater. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater, 11, 174-177(2012).

    [6] J B Pendry, L Martín-Moreno, F J García-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [7] G Goubau. On the excitation of surface waves. Proc IRE, 40, 865-868(1952).

    [8] A P Hibbins, B R Evans, J R Sambles. Experimental verification of designer surface plasmons. Science, 308, 670-672(2005).

    [9] F J García-Vidal, L Martín-Moreno, J B Pendry. Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt, 7, S97-S101(2005).

    [10] B K Juluri, S C S Lin, T R Walker, L Jensen, T J Huang. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Opt Express, 17, 2997-3006(2009).

    [11] R Elliott. On the theory of corrugated plane surfaces. Trans IRE Prof Group Antennas Propag, 2, 71-81(1954).

    [12] S A Maier, S R Andrews, L Martín-Moreno, F J García-Vidal. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett, 97, 176805(2006).

    [13] P Nagpal, N C Lindquist, S H Oh, D J Norris. Ultrasmooth patterned metals for plasmonics and metamaterials. Science, 325, 594-597(2009).

    [14] Y J Zhou, Q Jiang, T J Cui. Bidirectional bending splitter of designer surface plasmons. Appl Phys Lett, 99, 111904(2011).

    [15] J G Rivas. Terahertz: the art of confinement. Nat Photonics, 2, 137-138(2008).

    [16] Q Q Gan, Z Fu, Y J Ding, F J Bartoli. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett, 100, 256803(2008).

    [17] X G Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron58, 594201 (2015).

    [18] A Pors, E Moreno, L Martín-Moreno, J B Pendry, F J García-Vidal. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Llett, 108, 223905(2012).

    [19] L W Chen, X R Zheng, Z R Du, B H Jia, M Gu et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale, 7, 14982-14988(2015).

    [20] X Li, L W Chen, Y Li, X H Zhang, M B Pu et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv, 2, e1601102(2016).

    [21] F Qin, L Ding, L Zhang, F Monticone, C C Chum et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci Adv, 2, e1501168(2016).

    [22] H Gao, Y Li, L W Chen, J J Jin, M B Pu et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale, 10, 666-671(2018).

    [23] Q Q Gan, Y K Gao, K Wagner, D Vezenov, Y J Ding et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc Natl Acad Sci USA, 108, 5169-5173(2011).

    [24] C R Williams, S R Andrews, S A Maier, A I Fernández-Domínguez, L Martín-Moreno et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics, 2, 175-179(2008).

    [25] X P Shen, T J Cui, D Martin-Cano, F J García-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110, 40-45(2013).

    [26] A Kianinejad, Z N Chen, C W Qiu. Spoof plasmon-based slow-wave excitation of dielectric resonator antenna. IEEE Trans Antennas Propag, 64, 2094-2099(2016).

    [27] H C Zhang, W X Tang, J Xu, S Liu, J F Liu et al. Reduction of shielding-box volume using SPP-like transmission lines. IEEE Trans Comp, Packag Manuf Technol, 7, 1486-1492(2017).

    [28] H C Zhang, T J Cui, J Xu, W X Tang, J F Liu. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv Mater Technol, 2, 1600202(2017).

    [29] P H He, H C Zhang, W X Tang, Z X Wang, R T Yan et al. A multi-layer spoof surface plasmon polariton waveguide with corrugated ground. IEEE Access, 5, 25306-25311(2017).

    [30] A Kianinejad, Z N Chen, C W Qiu. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microw Theory Tech, 63, 1817-1825(2015).

    [31] D W Zhang, K Zhang, Q Wu, G H Yang, X J Sha. High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure. Opt Lett, 42, 2766-2769(2017).

    [32] D W Zhang, K Zhang, Q Wu, R W Dai, X J Sha. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency. Opt Lett, 43, 3176-3179(2018).

    [33] H C Zhang, Q Zhang, J F Liu, W X Tang, Y F Fan et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci Rep, 6, 23396(2016).

    [34] H C Zhang, T J Cui, Q Zhang, Y F Fan, X J Fu. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2, 1333-1340(2015).

    [35] H F Ma, X P Shen, Q Cheng, W X Jiang, T J Cui. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev, 8, 146-151(2014).

    [36] B C Pan, Z Liao, J Zhao, T J Cui. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Express, 22, 13940-13950(2014).

    Pei Hang He, Hao Chi Zhang, Xinxin Gao, Ling Yun, Wen Xuan Tang, Jiayuan Lu, Le Peng Zhang, Tie Jun Cui. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2019, 2(6): 190001
    Download Citation