• Opto-Electronic Advances
  • Vol. 2, Issue 6, 190001 (2019)
Pei Hang He1, Hao Chi Zhang2, Xinxin Gao1, Ling Yun1, Wen Xuan Tang1, Jiayuan Lu1, Le Peng Zhang1, and Tie Jun Cui1、*
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 2School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
  • show less
    DOI: 10.29026/oea.2019.190001 Cite this Article
    Pei Hang He, Hao Chi Zhang, Xinxin Gao, Ling Yun, Wen Xuan Tang, Jiayuan Lu, Le Peng Zhang, Tie Jun Cui. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2019, 2(6): 190001 Copy Citation Text show less

    Abstract

    Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger width of strip is required to load deeper grooves, which is cumbersome in modern large-scale integrated circuits and chips. In this work, a new spoof SPP transmission line (TL) with zigzag grooves is proposed. This new structure can achieve stronger field confinement compared to conventional one with the same strip width. In other words, the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size. Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs. Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size. Furthermore, two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration. Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL. Hence, this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.
    $ d_{\mathrm{g}}=d_{1} \cdot \sqrt{X^{2}+Y^{2}} / Y. $ (1)

    View in Article

    $ \alpha_{\mathrm{a}}^{2}=k_{\mathrm{p}}^{2}-k_{0}^{2} \varepsilon_{\mathrm{a}} \mu_{\mathrm{a}}, $ (2)

    View in Article

    $ \alpha_{\mathrm{d}}^{2}=k_{\mathrm{p}}^{2}-k_{0}^{2} \varepsilon_{\mathrm{d}} \mu_{\mathrm{d}}, $ (3)

    View in Article

    Pei Hang He, Hao Chi Zhang, Xinxin Gao, Ling Yun, Wen Xuan Tang, Jiayuan Lu, Le Peng Zhang, Tie Jun Cui. A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements[J]. Opto-Electronic Advances, 2019, 2(6): 190001
    Download Citation