• Journal of Semiconductors
  • Vol. 40, Issue 1, 011801 (2019)
H. F. Mohamed1、2, Changtai Xia1, Qinglin Sai1, Huiyuan Cui1, Mingyan Pan1, and Hongji Qi1
Author Affiliations
  • 1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Physics Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
  • show less
    DOI: 10.1088/1674-4926/40/1/011801 Cite this Article
    H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals[J]. Journal of Semiconductors, 2019, 40(1): 011801 Copy Citation Text show less
    References

    [1] S Geller. Crystal structure of β-Ga2O3. J Chem Phys, 33, 676(1960).

    [2] R Roy, V G Hill, E F J Osborn. Polymorphism of Ga2O3 and the System Ga2O3−H2O. Am Chem Soc, 74, 719(1952).

    [3] H H Tippins. Optical absorption and photoconductivity in the band edge of β−Ga2O3. Phys Rev, 140, A316(1965).

    [4] Z Hajnal, J Miro, G Kiss et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys, 86, 3792(1999).

    [5] J A Kohn, G Katz, J D Broder. Characterization of β-Ga2O3 and its alumina Isomorph θ-Al2O3. Am Minerol, 42, 398(1956).

    [6] G M Wolten, A B Chase. Determination of the point group of β-Ga2O3 from morphology and physical properties. J Solid State Chem, 16, 377(1976).

    [7] J Ahman, G mSvensson, J Albertsson. A reinvestigation of β-gallium oxide. Acta Crystallogr Sect C Cryst Struct Commun, 52, 1336(1996).

    [8] C Janowitz, V Scherer, M Mohamed et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 13, 085014(2011).

    [9] S Yoshioka, H Hayashi, A Kuwabara et al. Structures and energetics of Ga2O3 polymorphs. J Phys Condens Matter, 19, 346211(2007).

    [10] K Yamaguchi. First principles study on electronic structure of β-Ga2O3. Solid State Commun, 131, 739(2004).

    [11] H He, R Orlando, M Blanco et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 74, 195123(2006).

    [12] Y Zhang, J Yan, G Zhao et al. First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Physical B Condens Matter, 405, 3899(2010).

    [13] L Zhang, J Yan, Y Zhang et al. First principles study on electronic structure and optical properties of N-doped P-type β-Ga2O3. Sci China Phys, Mech Astron, 55, 19(2012).

    [14] H Peelaers, C G Van de Walle. Brillouin zone and band structure of β-Ga2O3. Phys Status Solidi B, 252, 828(2015).

    [15] J B Varley, J R Weber, A Janotti et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 97, 142106(2010).

    [16] K Nassau. Dr. A. V. L. Verneuil: The man and the method. J of Cry Growth, 13, 12(1972).

    [17] A B Chase. Growth of β-Ga2O3 by the Verneuil technique. J Am Ceram Soc, 47, 470(1964).

    [18] M R Lorenz, J F Woods, R J Gambino. Some electrical properties of the semiconductor β-Ga2O3. J Phys Chem Solids, 28, 403(1967).

    [19] T Harwig, J Schoonman. Electrical properties of β-Ga2O3 single crystals. J Solid State Chem II, 23, 205(1978).

    [20] T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Communications, 18, 1223(1976).

    [21]

    [22] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth, 270, 420(2004).

    [23] J Zhang, B Li, C Xia et al. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids, 67, 2448(2006).

    [24] J Czochralski. A new method for the measurement of the crystallization rate of metals. Zeitschrift für Physikalische Chemie, 92, 219(1918).

    [25] Z Galazka, R Uecker, K Irmscher et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol, 45, 1229(2010).

    [26] Y Tomm, P Reiche, D Klimm et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 220, 510(2000).

    [27] Z Galazka, R Uecker, D Klimm et al. Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS Journal of Solid State Science and Technology, 6, Q3007(2017).

    [28] Z Galazka, S Ganschow, A Fiedler et al. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al. J Cry Growth, 486, 82(2018).

    [29] H E LaBelle, B Chalmers, A I Mlavsky. Growth of controlled profile crystals from the melt: Part III — Theory. Mater Res Bull, 6, 681(1971).

    [30] H LaBelle, A Mlavsky. Growth of controlled profile crystals from the melt: Part I - Sapphire filaments. Materials Research Bulletin, 6, 571(1971).

    [31] H LaBelle Jr. Growth of controlled profile crystals from the melt: Part II - Edge-defined, film-fed growth (EFG). Materials Research Bulletin, 6, 581(1971).

    [32] H Aida, K Nishiguchi, H Takeda et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Japanese Journal of Applied Physics, 47, 8506(2008).

    [33] W Mu, Z Jia, Y Yin et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. Journal of Alloys and Compounds, 714, 453, 458(2017).

    [34] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).

    [35]

    [36] S N Zhang, X Z Lian, Y C Ma et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J Semicond, 39, 083003(2018).

    [37] P W Bridgman. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences, 60, 305(1925).

    [38] D C Stockbarger. The production of large single crystals of lithium fluoride. Review of Scientific Instruments, 7, 133(1936).

    [39] K Hoshikawa, E Ohba, T Kobayashi et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. Journal of Crystal Growth, 447, 36(2016).

    [40] E Ohba, T Kobayashi, M Kado et al. Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Jpn J Appl Phys, 55, 1202BF(2016).

    [41] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron Mater, 4, 1600501(2018).

    [42] N Suzuki, S Ohira, M Tanaka et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi (C), 4, 2310(2007).

    [43] N Ueda, H Hosono, R Waseda et al. Synthesis and control of conductivity of ultraviolet transmitting single crystals. Appl Phys Lett, 70, 3561(1997).

    [44] S Ohira, N Suzuki, N Arai et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films, 516, 5763(2008).

    [45] E G VÍllora, K Shimamura, Y Yoshikaw et al. Electrical conductivity and carrier concentration control in by Si doping. Appl Phys Lett, 92, 202120(2008).

    [46] K Sasaki, M Higashiwaki, A Kuramata et al. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl Phys Express, 6, 6502(2013).

    [47] W Zhou, C Xia, Q Sai et al. Controlling n-type conductivity of β-Ga2O3 by Nb doping. Appl Phys Lett, 111, 242103(2017).

    [48] M A Mastro, A Kuramata, J Calkins et al. Perspective—opportunities and future directions for Ga2O3. J Solid State Sci Technol, 6, P356(2017).

    [49] J B Varley, A Janotti, C Franchini et al. Role of self-trapping in luminescence and-type conductivity of wide-band-gap oxides. Phys Rev B, 85, 081109(2012).

    [50] B E Kananen, L E Halliburton, K T Stevens et al. Gallium vacancies in β-Ga2O3 crystals. Appl Phys Lett, 110, 202104(2017).

    [51] T Onuma, S Fujioka, T Yamaguchi et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 103, 2013(2013).

    [52] L L Liu, M K Li, D Q Yu et al. Fabrication and characteristics of N-doped β-Ga2O3 nanowires. Appl Phys A, 98, 831(2010).

    [53] L Dong, R Jia, C Li et al. Ab initio study of N-doped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties. J Alloys Compd, 712, 379(2017).

    [54] A Kyrtsos, M Matsubara, E Bellotti. On the feasibility of p-type Ga2O3. Appl Phy Lett, 112, 032108(2018).

    [55] M Bartic, Y Toyoda, C I Baban et al. Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn J Appl Phys, 45, 5186(2006).

    [56] J L Hudgins, G S Simin, E Santi et al. An assessment of wide bandgap semiconductors for power devices. IEEE Trans Power Electron, 18, 907(2003).

    [57] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semiconductor Science and Technology, 31, 034001(2016).

    [58] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power devices. Physica Status Solidi (a), 211, 21(2014).

    [59] T Oishi, Y Koga, K Harada et al. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 8, 031101(2015).

    [60] K Sasaki, M Higashiwaki, A Kuramata et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett, 34, 493(2013).

    [61] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Letters, 39, 1564(2018).

    [62] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters, 100, 013504(2012).

    [63] A J Green, K D Chabak, E R Heller et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 37, 902(2016).

    [64] R Suzuki, S Nakagomi, Y Kokubun et al. Enhancement of responsivity in solar-blind photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett, 94, 222102(2009).

    [65] C Yang, H Liang, Z Zhang et al. Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv, 8, 6341(2018).

    [66] E Patrick, M Choudhury, F Ren et al. Simulation of radiation effects in AlGaN/GaN HEMTs. ECS J Solid State Sci Technol, 4, Q21(2015).

    [67] J Yang, F Ren, S J Pearton et al. A 1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers. J Vac Sci Technol B, 35, 031208(2017).

    [68] D Szalkai, Z Galazka, K Irmscher et al. β-Ga2O3 solid-state devices for fast neutron detection. IEEE Trans Nucl Sci, 64, 1248(2017).

    H. F. Mohamed, Changtai Xia, Qinglin Sai, Huiyuan Cui, Mingyan Pan, Hongji Qi. Growth and fundamentals of bulk β-Ga2O3 single crystals[J]. Journal of Semiconductors, 2019, 40(1): 011801
    Download Citation