• Photonics Research
  • Vol. 11, Issue 5, 852 (2023)
Mingsheng Tian1、†, Fengxiao Sun1、†, Kaiye Shi2, Haitan Xu3、4、5、9、*, Qiongyi He1、6、7、10、*, and Wei Zhang2、8、11、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
  • 2Department of Physics, Renmin University of China, Beijing 100872, China
  • 3School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
  • 4Shishan Laboratory, Nanjing University, Suzhou 215163, China
  • 5School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 6Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 7Hefei National Laboratory, Hefei 230088, China
  • 8Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 9e-mail: haitanxu@nju.edu.cn
  • 10e-mail: qiongyihe@pku.edu.cn
  • 11e-mail: wzhangl@ruc.edu.cn
  • show less
    DOI: 10.1364/PRJ.485595 Cite this Article Set citation alerts
    Mingsheng Tian, Fengxiao Sun, Kaiye Shi, Haitan Xu, Qiongyi He, Wei Zhang. Nonreciprocal amplification transition in a topological photonic network[J]. Photonics Research, 2023, 11(5): 852 Copy Citation Text show less
    References

    [1] L. Deák, T. Fülöp. Reciprocity in quantum, electromagnetic and other wave scattering. Ann. Phys., 327, 1050-1077(2012).

    [2] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [3] L. Ranzani, J. Aumentado. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys., 17, 023024(2015).

    [4] H. Pichler, T. Ramos, A. J. Daley, P. Zoller. Quantum optics of chiral spin networks. Phys. Rev. A, 91, 042116(2015).

    [5] A. Metelmann, H. E. Türeci. Nonreciprocal signal routing in an active quantum network. Phys. Rev. A, 97, 043833(2018).

    [6] M. Jalali Mehrabad, A. P. Foster, R. Dost, E. Clarke, P. K. Patil, A. M. Fox, M. S. Skolnick, L. R. Wilson. Chiral topological photonics with an embedded quantum emitter. Optica, 7, 1690-1696(2020).

    [7] D. A. B. Miller. Are optical transistors the logical next step?. Nat. Photonics, 4, 3-5(2010).

    [8] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner. What is — and what is not — an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [9] P. O. Guimond, B. Vermersch, M. L. Juan, A. Sharafiev, G. Kirchmair, P. Zoller. A unidirectional on-chip photonic interface for superconducting circuits. npj Quantum Inf., 6, 32(2020).

    [10] H.-K. Lau, A. A. Clerk. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun., 9, 4320(2018).

    [11] A. McDonald, A. A. Clerk. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun., 11, 5382(2020).

    [12] H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A. F. Popkov. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B, 22, 240-253(2005).

    [13] D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, J. E. Bowers. Dynamically reconfigurable integrated optical circulators. Optica, 4, 23-30(2017).

    [14] X.-X. Hu, Z.-B. Wang, P. Zhang, G.-J. Chen, Y.-L. Zhang, G. Li, X.-B. Zou, T. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, C.-L. Zou. Noiseless photonic non-reciprocity via optically-induced magnetization. Nat. Commun., 12, 2389(2021).

    [15] B. Abdo, K. Sliwa, L. Frunzio, M. Devoret. Directional amplification with a Josephson circuit. Phys. Rev. X, 3, 031001(2013).

    [16] K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X, 5, 041020(2015).

    [17] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91-94(2009).

    [18] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [19] R. Duggan, D. Sounas, A. Alu. Optically driven effective Faraday effect in instantaneous nonlinear media. Optica, 6, 1152-1157(2019).

    [20] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 558, 569-572(2018).

    [21] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [22] E. Verhagen, A. Alù. Optomechanical nonreciprocity. Nat. Phys., 13, 922-924(2017).

    [23] M. Hafezi, P. Rabl. Optomechanically induced non-reciprocity in microring resonators. Opt. Express, 20, 7672-7684(2012).

    [24] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [25] H. Xu, D. Mason, L. Jiang, J. G. E. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).

    [26] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, C.-H. Dong. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun., 9, 1797(2018).

    [27] H. Xu, L. Jiang, A. A. Clerk, J. G. E. Harris. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature, 568, 65-69(2019).

    [28] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).

    [29] X. Xu, Y. Zhao, H. Wang, H. Jing, A. Chen. Quantum nonreciprocality in quadratic optomechanics. Photon. Res., 8, 143-150(2020).

    [30] Z. Shen, Y.-L. Zhang, Y. Chen, Y.-F. Xiao, C.-L. Zou, G.-C. Guo, C.-H. Dong. Nonreciprocal frequency conversion and mode routing in a microresonator. Phys. Rev. Lett., 130, 013601(2023).

    [31] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys., 82, 1155-1208(2010).

    [32] A. Metelmann, A. A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [33] A. Metelmann, A. A. Clerk. Nonreciprocal quantum interactions and devices via autonomous feedforward. Phys. Rev. A, 95, 013837(2017).

    [34] A. Metelmann, A. A. Clerk. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett., 112, 133904(2014).

    [35] D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, A. Nunnenkamp. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett., 120, 023601(2018).

    [36] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [37] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 13, 465-471(2017).

    [38] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 8, 604(2017).

    [39] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, J. D. Teufel. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X, 7, 031001(2017).

    [40] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, J. M. Fink. Mechanical on-chip microwave circulator. Nat. Commun., 8, 953(2017).

    [41] L. Mercier de Lépinay, E. Damskägg, C. F. Ockeloen-Korppi, M. A. Sillanpää. Realization of directional amplification in a microwave optomechanical device. Phys. Rev. Appl., 11, 034027(2019).

    [42] D. Porras, S. Fernández-Lorenzo. Topological amplification in photonic lattices. Phys. Rev. Lett., 122, 143901(2019).

    [43] C. C. Wanjura, M. Brunelli, A. Nunnenkamp. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun., 11, 3149(2020).

    [44] J. C. Budich, E. J. Bergholtz. Non-Hermitian topological sensors. Phys. Rev. Lett., 125, 180403(2020).

    [45] F. Koch, J. C. Budich. Quantum non-Hermitian topological sensors. Phys. Rev. Res., 4, 013113(2022).

    [46] T. Ramos, J. J. Garca-Ripoll, D. Porras. Topological input-output theory for directional amplification. Phys. Rev. A, 103, 033513(2021).

    [47] M. S. Rudner, L. S. Levitov. Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett., 102, 065703(2009).

    [48] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 8, 031079(2018).

    [49] C. Zhou, Y. P. Liu, Z. Wang, S. J. Ma, M. W. Jia, R. Q. Wu, L. Zhou, W. Zhang, M. K. Liu, Y. Z. Wu, J. Qi. Broadband terahertz generation via the interface inverse Rashba-Edelstein effect. Phys. Rev. Lett., 121, 086801(2018).

    [50] K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 123, 066404(2019).

    [51] Q. Wang, C. Zhu, Y. Wang, B. Zhang, Y. D. Chong. Amplification of quantum signals by the non-Hermitian skin effect. Phys. Rev. B, 106, 024301(2022).

    [52] C. C. Wanjura, M. Brunelli, A. Nunnenkamp. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 127, 213601(2021).

    [53] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada, J. Lavoie. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [54] M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, A. B. Khanikaev. Higher-order topological states in photonic Kagome crystals with long-range interactions. Nat. Photonics, 14, 89-94(2020).

    [55] B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, B. J. Eggleton. Spectral photonic lattices with complex long-range coupling. Optica, 4, 1433-1436(2017).

    [56] Y. Wang, J. Ren, W. Zhang, L. He, X. Zhang. Topologically protected long-range coherent energy transfer. Photon. Res., 8, B39-B46(2020).

    [57] H. J. Carmichael. Statistical Methods in Quantum Optics 1, 1-28(1999).

    [58] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [59] K. Kawabata, K. Shiozaki, M. Ueda, M. Sato. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 9, 041015(2019).

    [60] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [61] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [62] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [63] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [64] K. Fang, Z. Yu, S. Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics, 6, 782-787(2012).

    [65] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [66] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [67] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).

    [68] A. B. Khanikaev, A. Alù. Nonlinear dynamic reciprocity. Nat. Photonics, 9, 359-361(2015).

    [69] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).

    [70] Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [71] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [72] K. O’Brien, C. Macklin, I. Siddiqi, X. Zhang. Resonant phase matching of Josephson junction traveling wave parametric amplifiers. Phys. Rev. Lett., 113, 157001(2014).

    [73] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, I. Siddiqi. A near–quantum-limited Josephson traveling-wave parametric amplifier. Science, 350, 307-310(2015).

    Mingsheng Tian, Fengxiao Sun, Kaiye Shi, Haitan Xu, Qiongyi He, Wei Zhang. Nonreciprocal amplification transition in a topological photonic network[J]. Photonics Research, 2023, 11(5): 852
    Download Citation