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We studied the transport properties of a driven-dissipative photonic network, where multiple photonic cavities
are coupled through a nonreciprocal bus with unidirectional transmission. For short-range coupling between the
cavities, the occurrence of nonreciprocal amplification can be linked to a topological phase transition of the
underlying dynamic Hamiltonian. However, for long-range coupling, we show that the correspondence between
the nonreciprocal amplification transition and the topological phase transition breaks down as the transition
conditions deviate significantly from each other. We found the exact transition condition for nonreciprocal am-
plification, supported by analytical calculation and numerical simulation. We also investigated the stability, the
crossover from short- to long-range coupling, and the bandwidth of the nonreciprocal amplification. Our work
has potential applications in signal transmission and amplification, and also paves the way to study other topo-
logical and non-Hermitian systems with long-range coupling and nontrivial boundary effects. © 2023 Chinese

Laser Press

https://doi.org/10.1364/PRJ.485595

1. INTRODUCTION

Nonreciprocity breaks the invariance of transmission ampli-
tudes under the exchange of the source and detector, and is
of great value in numerous circumstances [1]. For instance,
it offers new functionalities to photonic networks [2–6], enhan-
ces the information processing capacity [7–9], and acts as a re-
source for quantum metrology [10,11]. A number of strategies
have been developed to realize nonreciprocity, such as magneto-
optical effects [12–14], a nonreciprocal phase response in
Josephson circuits [15,16], spatial-temporal refractive index
modulations [17–20], and optomechanically induced nonreci-
procity [21–30]. Of particular interest is an amplifier with
nonreciprocity that protects weak signals against noises from
the readout electronics [31], and can be achieved by reservoir
engineering with interfering coherent and dissipative
processes [32–41].

Recent works show that a correspondence between nonre-
ciprocal amplification and topological phase can be established
[42–46]. The transport properties of a driven-dissipative system
can be characterized by a topological invariant [47,48] and also
related to non-Hermitian skin effects [49–51]. The nonrecip-
rocal amplification transition can be connected to the topologi-
cal phase transition that is accompanied by the emergence of
zero-energy edge states [42,43,46] and is robust against disor-
der [52]. However, the application of topological characteriza-
tion in understanding nonreciprocal amplication in photonic
networks was focused on systems with short-range coupling
[42,52]. As recent studies discovered novel phenomena and
applications in photonic systems with long-range coupling
[53–56], it is intriguing to investigate the properties of nonre-
ciprocal amplification and its relation to the topological phase
transition for long-range coupled photonic systems.
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In this paper, we investigated the nonreciprocal transport
properties in both short- and long-range coupled photonic net-
works, and obtained the exact condition for the nonreciprocal
amplification transition (NAT) of the photonic network as well
as the topological phase transition (TPT) of the underlying dy-
namic Hamiltonian. To be specific, we studied the transport
properties of a driven-dissipative system where a chain of pho-
tonic cavities was coupled to a common nonreciprocal bus with
unidirectional transmission. The range of the effective coupling
between different cavities was determined by the attenuation
length of the bus, which can be much longer than the spacing
between the nearest neighbors. Nonreciprocal amplification
can be achieved with a wide range of parameters. For short-
range coupling, the NAT can be linked to the TPT either
in the analysis of the non-Hermitian coupling matrix [43]
or within the framework of the topological band theory with
auxiliary chiral symmetry [42]. However, we found that the
correspondence breaks down for long-range coupling because
the NAT deviates significantly from the TPT associated with
the dynamic matrix. We further investigated the stability of the
system, the crossover from short- to long-range coupling, and
the bandwidth of amplification.

2. UNIDIRECTIONAL AMPLIFICATION
TRANSITION

We considered a photonic network composed of an array of N
cavities and a nonreciprocal bus, as shown in Fig. 1. We
focused on one photonic mode aj for each cavity, and the
photonic modes of different cavities can be engineered to have
an identical resonance frequency ω0. The cavities were coupled
to the nonreciprocal bus, which supports a continuum of right-
propagating modes. The Hamiltonian of the photonic network
reads Ĥ tot � Ĥ S � ĤR � Ĥ SR , where Ĥ S � †ω0

PN
j�1 â

†
j âj

corresponds to the N cavities, and ĤR � R
dωb†ωbb̂

†�ωb� ⋅
b̂�ωb� is the free Hamiltonian of the bus modes. The cavity-
bus coupling can be modeled as Ĥ SR � i†

P
j

R
dωb

ffiffiffiffiffiffiffiffiffiffiffi
Γ∕2π

p
⋅

b̂†�ωb�âjei�kbxj−ωbt� �H:C:, where jωb − ω0j ≪ ω0, xj denotes
the position of the jth cavity, and Γ is the coupling rate between
the cavity mode aj and the bus modes b�ωb�. As the bus modes
propagate unidirectionally from the left (j � 1) to the right
(j � N ), the wavevector kb satisfies Re�kb� > 0, and can be
expressed as kb � ωb∕v � ik 00b , where v is the group velocity
of the bus mode and k 00b is determined by the loss rate.

We used the input–output formalism to characterize the
transport properties of the system. Under the Born–Markov
approximation [57], the equations of motion for the
amplitudes hâj�t�i are given by

h _̂aj�t�i �
γj − κj − Γ − 2iω0

2
hâj�t�i −

ffiffiffiffi
κj

p hâj,in�t�i

−
XN
l<j

Γjl eikωxjl hâl �t�i

� −iω0haj�t�i �
Xj

l�1

Hjl hâl �t�i −
ffiffiffiffi
κj

p hâj,in�t�i, (1)

where hâj,in�t�i are input fields, kω � ω∕v, ω is the signal fre-
quency, xjl � xj − xl , and Γjl � Γe−xjl∕ζ with ζ � 1∕k 00b is the
attenuation length of the bus. Hjl � −Γjl eikωxjl for l < j,
Hjl � �γj − κj − Γ�∕2 for l � j, and Hjl � 0 for l > j. For
simplicity, we assumed that the input/output coupling rates
and pumping rates were identical for all cavities; i.e., κj � κ
and γj � γ. As ζ varies from ζ ≪ N to ζ ≫ N , the effective
coupling between different cavities changed from short range to
long range.

By Fourier transforming â�t� and considering the input–
output boundary conditions âj,out�ω� � âj,in�ω� �

ffiffiffi
κ

p
âj�ω�

[58], we obtained the input–output relation in the frequency
domain

aout�ω� � fI� κ�H � i�ω − ω0�I�−1gain�ω� � S�ω�ain�ω�,
(2)

where ain=out � �hâ1,in=outi,…, hâN ,in=outi�T is the input/out-
put amplitude vector. The nonreciprocal amplification can
be captured by the scattering matrix S�ω�. In particular, a large
component in the bottom left corner of S�ω�, as shown in
Fig. 2(a), corresponds to a strong amplification of the input
signal from the first cavity (j � 1) to the last one (l � N ).

From Eq. (2), we obtained an analytical solution for the
scattering matrix,

…out
in

Γ

Fig. 1. Chain of N photonic cavities with identical modes coupled
to a nonreciprocal bus. The nonreciprocity of the bus can be enforced
by inserting optical isolators between neighboring cavities. Γ denotes
the coupling between each cavity and the bus, κ is the input/output
coupling rate of each cavity, γ is the net pumping rate (including in-
ternal damping), and d is the spacing between neighboring cavities.
Here, we take the natural unit of d � 1.
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Fig. 2. Scattering matrices for (a) γ � 0.5 and (b) γ � 0.2 with
N � 20. (c) Gain jSN1j2 for different system sizes as a function of the
pumping rate γ. In all plots, Γ � 1, κ � 0.25, Δω � 0, and ζ ≫ N .
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jSjl j �

8>><
>>:

��� γ�κ−Γ�2iΔω
γ−κ−Γ�2iΔω

���, for j � l ;

0, for j < l ;

Be�j−l��ξ−1−ζ−1�, for j > l :

(3)

The coefficients are given by

B � 4κΓ
j�γ � Γ − κ � 2iΔω��γ − Γ − κ � 2iΔω�j ,

ξ �
�
ln

���� γ � Γ − κ � 2iΔω
γ − Γ − κ � 2iΔω

����
�

−1

, (4)

where Δω � ω − ω0 is the frequency detuning. An amplifica-
tion from the l th cavity to the jth cavity occurs when jSjl j > 1.
When the separation j − l is sufficiently large, we have jSjl j > 1
for ξ−1 > ζ−1; i.e.,

γ > κ � Γ −
2Γ

e1∕ζ � 1
(5)

for zero detuning, while the attenuation occurs for ξ−1 < ζ−1.
Of particular interest was the long-range coupling case of

ζ ≫ N . In this case, the condition of amplification becomes
γ > κ. This result suggests that any small cavity-bus coupling
would suffice to sustain nonreciprocal amplification provided
that the pumping overcomes the dissipation to the input–
output ports. For γ < κ, the amplitudes of all scattering matrix
elements are less than unity, as shown in Fig. 2(b). When γ goes
beyond the transition point [red dot in Fig. 2(c)], jSN1j be-
comes larger than 1 and increases rapidly with N , as depicted
in Fig. 2(c). When γ is further increased beyond κ � Γ, the
system enters an unstable regime denoted by the shaded area
in Fig. 2(c). A stable system requires that the real parts of the
eigenvalues qn of the non-Hermitian matrix H should be neg-
ative; otherwise, any fluctuation would get exponentially
amplified. In our case, the eigenvalues were degenerate and
Re�qn� � �γ − κ − Γ�∕2, and thus the system is stable only
when γ < κ � Γ.

3. RELATION BETWEEN AMPLIFICATION
TRANSITION AND TOPOLOGICAL PHASE
TRANSITION

The nonreciprocal amplification transition exhibited in the
scattering matrix S is rooted in the non-Hermitian dynamic
matrix M � H � i�ω − ω0�I, which satisfies S � I� κM −1.
If the system has only nearest-neighbor coupling between
the cavities, a direct correspondence can be established between
the nonreciprocal amplification and a nontrivial topological
invariant defined with the spectrum of the dynamic matrix
under a periodic boundary condition (PBC) [43]. However,
as we will show later, this correspondence does not hold in
our system for long-range coupling.

Under the PBC, the dynamic matrixMp �
P

k hp�k�jkihkj
is diagonal in the basis jki � �1∕ ffiffiffiffiffi

N
p �Pj e

ikjjji, where
k � 2πn∕N with n � 0, 1, …,N − 1, and jji represents
the real-space wave function. The spectrum of Mp reads

hp�k� �
XN−1

m�0

μme−ikm, (6)

where μ0 � �γ − κ − Γ�∕2� iΔω and μm>0 � −Γe−m∕ζeikωm.
For more details, see Appendix A. Since Mp is non-Hermitian,
hp�k� � hp,x�k� � ihp,y�k� is in general complex with
hp,x , hp,y ∈ R. Furthermore, since hp�k� is periodic in k with
a period of 2π, it describes a closed curve in the complex plane
when k varies from 0 to 2π. Thus, we can define a winding
number from the argument principle [48,59]

νp �
1

2πi

Z
2π

0

dk
h 0p�k�
hp�k�

� 1

2πi

Z
2π

0

dk
d

dk
log hp�k�: (7)

The winding number is an integer and can be obtained by
counting the number of times that hp�k� wraps around the ori-
gin as k varies from 0 to 2π.

The topological phase transition occurs at the location
where the real and the imaginary parts of hp�k� are both zero
for some k. If the coupling range is much smaller than the sys-
tem size (ζ ≪ N ) and the detuning Δω is zero, the TPT con-
dition is the same as the NAT condition in Eq. (5). However, in
the case of long-range coupling ζ ≫ N with zero detuning, the
TPT occurs at γ � κ − Γ, which is different from the NAT con-
dition. For more details, see Appendix A.

In Fig. 3, we present the gain jSN1j2 as a function of the
pumping rate γ and the attenuation length ζ. Three regions
can be clearly identified; i.e., the attenuation (left), the ampli-
fication (middle), and the unstable (right) regions. The topo-
logical phase transition of the dynamic matrix Mp under the
PBC (red dashed line) coincides with the amplification transi-
tion only for short-range coupling (ζ ≪ N ), where the boun-
dary effect is negligible. With increasing ζ, the correspondence
between the topological phase transition and the nonreciprocal
amplification transition breaks down. As shown in Fig. 3, the
TPT deviates drastically from the NAT when ζ ≫ N .

In Fig. 4, we show the gain jSN1j2 for nonzero detuning to
manifest the bandwidth of amplification as usually defined by
the FWHM.We plot the gain jSN1j2 as a function of frequency

U
nstable

TPTL
o
g
[ζ
/
]

Log[| |2]

NAT

Fig. 3. Gain jSN1j2 as a function of the pumping rate γ and the
attenuation length ζ. The black dashed curve labeled by NAT corre-
sponds to the nonreciprocal amplification transition, which agrees well
with the topological phase transition (red dashed curve labeled by
TPT) when ζ ≪ N . As ζ increases, the NAT starts to deviate from
the TPT. The white dashed curve indicates the critical pumping be-
yond which the system becomes unstable. For the simulation, we take
N � 100, Γ � 1, and κ � 0.25.
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detuning Δω and the pumping rate γ. The amplification
bandwidth for various γ is indicated by the blue dash-dotted
curve. We can see that the amplification bandwidth decreases
with increasing γ, which is determined by Eq. (3).

Finally, we discuss other possible experimental realizations
of the proposed model. Recently, nonreciprocal transport
and amplification for short-range coupled models have been
observed by optomechanical interactions [26,36,37], which
can be adapted for the photonic network in this work. The
whispering gallery modes in microresonators can be chirally
coupled with a forward propagating wave in a tapered fiber,
which can also be used to simulate the model here, and the
attenuation length can be orders of magnitude longer than
the length scale of the microresonator systems [60,61]. The
photonic network also can be realized with photonic crystals
[62,63] using time or spatial modulations [64–67], optical
nonlinearities [68,69], or gyromagnetic and dielectric materials
with artificial design [70,71]. Besides, the superconducting sys-
tems also provide a good platform to realize the nonreciprocal
amplification [72,73]. Experimental parameters for specific
platforms can be readily deduced from the theoretical frame-
work in this work.

4. CONCLUSION

To conclude, we have studied the nonreciprocal amplification
transition in a photonic network of cavities coupled to a non-
reciprocal bus with unidirectional transmission. When the at-
tenuation length of the bus is larger than the system size, an
effective long-range coupling between the cavities can be estab-
lished. We show that the correspondence between the non-
reciprocal amplification transition and topological phase
transition breaks down for long-range coupling, as the NAT
deviates significantly from the TPT associated with the under-
lying dynamic matrix. We derived the exact analytical condi-
tions for both the amplification transition and the topological
phase transition for an arbitrary coupling range. We believe our

work can be applied to signal transmission and amplification,
and also paves the way to study the long-range coupling and
nontrivial boundary effects in other topological and non-
Hermitian systems.

APPENDIX A: DERIVATION OF DYNAMIC
MATRIX UNDER PERIODIC BOUNDARY
CONDITION

The dynamic matrix under PBC can be rewritten in the plane-
wave basis as

Mp �
XN
j�1

XN−1

m�0

μmjj� mihjj

� 1

N

XN
j�1

XN−1

m�0

μm
X
k 0

e−ik 0�m�j�
X
k 00

eik 00jjk 0ihk 00j

�
X
k

XN−1

m�0

μme−ikmjkihkj

�
X
k

hp�k�jkihkj, (A1)

where jji � 1ffiffiffi
N

p
P

k e
−ikjjki. As μ0 � �γ − κ − Γ�∕2� iΔω

and μm>0 � −Γe−m∕ζeikωm, we have

hp�k� �
γ − κ − Γ

2
� iΔω − Γ

ei�kω−k�−1∕ζ − eiN �kω−k�−N∕ζ

1 − ei�kω−k�−1∕ζ
,

(A2)
which holds for any coupling range. We can define the winding
number as the number of times that hp�k� wraps around the
origin when k increases from 0 to 2π, and a topological phase
transition occurs when hp�k� becomes zero; i.e.,

γ � κ � Γ� 2Γ
ei�kω−k�−1∕ζ − eiN �kω−k�−N∕ζ

1 − ei�kω−k�−1∕ζ
− 2iΔω: (A3)

If the coupling range ζ is much smaller than the system size
N and the detuning Δω of the input signal is zero, the topo-
logical phase transition condition is simplified to

γ � κ � Γ −
2Γ

e1∕ζ � 1
: (A4)

By defining the parameter

ξ �
�
ln

���� γ � Γ − κ� 2iΔω
γ − Γ − κ � 2iΔω

����
�

−1

,

the topological phase transition condition can be rewritten as
ζ � ξ, provided that the system is in the stable regime with
γ < κ � Γ. This condition is consistent with the nonreciprocal
amplification transition condition.

However, for long-range coupling (ζ ≫ N ), the element of
the dynamic matrix in Eq. (A2) becomes

hp�k� �
γ − κ − Γ

2
� iΔω − Γ

ei�kω−k� − eiN �kω−k�

1 − ei�kω−k�
: (A5)

The topological phase transition condition in Eq. (A3) then
becomes

γ � κ − Γ, (A6)
which is different from the amplification transition condition.

Δ

og[| |2]

Fig. 4. Gain jSN1j2 as a function of the pumping rate γ and the
frequency detuning Δω for long-range coupling (ζ ≫ N ). The black
dashed curve corresponds to unidirectional amplification transition.
The blue dash-dotted curve corresponds to half maximum amplifica-
tion for different γ, which indicates the amplification bandwidth. For
the simulation, we take N � 100, Γ � 1, and κ � 0.25.
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Note that Eq. (A6) should not be derived from Eq. (A4). This
observation suggests that one can no longer use the topological
phase transition to predict the amplification transition in a sys-
tem with long-range coupling.
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