• Photonics Research
  • Vol. 6, Issue 4, 321 (2018)
Jun Wang1、*, Haiyang Hu1, Haiying Yin1, Yiming Bai2, Jian Li3, Xin Wei3, Yuanyuan Liu4, Yongqing Huang1, Xiaomin Ren1, and Huiyun Liu5
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • 3Laboratory of Nano Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 4Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5Department of Electronic & Electrical Engineering, University College London, London WC1E 7JE, UK
  • show less
    DOI: 10.1364/PRJ.6.000321 Cite this Article Set citation alerts
    Jun Wang, Haiyang Hu, Haiying Yin, Yiming Bai, Jian Li, Xin Wei, Yuanyuan Liu, Yongqing Huang, Xiaomin Ren, Huiyun Liu. 1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers[J]. Photonics Research, 2018, 6(4): 321 Copy Citation Text show less
    References

    [1] A. Rickman. The commercialization of silicon photonics. Nat. Photonics, 8, 579-582(2014).

    [2] M. Asghari, A. V. Krishnamoorthy. Silicon photonics: energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [3] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, D. Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [4] S. G. Cloutier, P. A. Kossyrev, J. M. Xu. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nat. Mater., 4, 887-891(2005).

    [5] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Panicia, J. E. Bowers. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express, 14, 9203-9210(2006).

    [6] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, J. Michel. An electrically pumped germanium laser. Opt. Express, 20, 11316-11320(2012).

    [7] D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, D. Buca. Optically pumped GeSn microdisk lasers on Si. ACS Photon., 3, 1279-1285(2016).

    [8] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [9] E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, S. Chen. Metamorphic III-V semiconductor lasers grown on silicon. MRS Bull., 41, 218-223(2016).

    [10] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [11] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).

    [12] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [13] R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, C. Chang-Hasnain. Nanolasers grown on silicon. Nat. Photonics, 5, 170-175(2011).

    [14] A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, J. E. Bowers. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron., 21, 1900708(2015).

    [15] J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, X. Yan. Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon. J. Lightwave Technol., 33, 3163-3169(2015).

    [16] T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express, 19, 11381-11386(2011).

    [17] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, J. E. Bowers. High performance continuous wave 1.3  μm quantum dot lasers on silicon. Appl. Phys. Lett., 104, 041104(2014).

    [18] D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers. High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si. Appl. Phys. Lett., 111, 122107(2017).

    [19] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett., 41, 1664-1667(2016).

    [20] J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, Y. Arakawa. Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition. IEEE J. Sel. Top. Quantum Electron., 11, 1027-1034(2005).

    [21] N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, J. I. Chyi. InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy. Appl. Phys. Lett., 80, 535-537(2002).

    [22] T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, D. J. Kim. Annealing-induced change in quantum dot chain formation mechanism. AIP Adv., 4, 127142(2014).

    [23] L. Song, H. Zhu, J. Pan, L. Zhao, W. Wang. Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates. Chin. Phys. Lett., 22, 2692-2695(2005).

    [24] K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, R. A. Hogg. Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer. IEEE J. Sel. Top. Quantum Electron., 15, 819-827(2009).

    [25] F. Y. Chang, J. D. Lee, H. H. Lin. Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy. Electron. Lett., 40, 179-180(2004).

    [26] J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, X. Ren. Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition. Chin. Phys. Lett., 32, 088101(2015).

    [27] H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, X. Ren. Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition. Appl. Phys. A, 122, 588(2016).

    [28] J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, X. Ren. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin. Phys. B, 24, 028101(2015).

    [29] M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, H. Liu. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J. Sel. Top. Quantum Electron., 22, 50-56(2016).

    [30] T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, S. S. Papa Rao. GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction. J. Appl. Phys., 118, 105307(2015).

    [31] O. B. Shchekin, D. G. Deppe. Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region. IEEE Photon. Technol. Lett., 14, 1231-1233(2002).

    [32] R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, D. J. Mowbray. Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers. IEEE J. Quantum Electron., 43, 1129-1139(2007).

    CLP Journals

    [1] Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, John E. Bowers. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability[J]. Photonics Research, 2018, 6(8): 776

    Jun Wang, Haiyang Hu, Haiying Yin, Yiming Bai, Jian Li, Xin Wei, Yuanyuan Liu, Yongqing Huang, Xiaomin Ren, Huiyun Liu. 1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers[J]. Photonics Research, 2018, 6(4): 321
    Download Citation