• Journal of Semiconductors
  • Vol. 41, Issue 7, 072903 (2020)
Hailong Wang1、2, Jialin Ma1、2, Qiqi Wei1、2, and Jianhua Zhao1、2、3
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1088/1674-4926/41/7/072903 Cite this Article
    Hailong Wang, Jialin Ma, Qiqi Wei, Jianhua Zhao. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. Journal of Semiconductors, 2020, 41(7): 072903 Copy Citation Text show less
    References

    [1] Z J Wang, H M Weng, Q S Wu et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 88, 125427(2013).

    [2] M N Ali, Q Gibson, S Jeon et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg Chem, 53, 4062(2014).

    [3] S Borisenko, Q Gibson, D Evtushinsky et al. Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett, 113, 027603(2014).

    [4] Z K Liu, J Jiang, B Zhou et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 13, 677(2014).

    [5] S Jeon, B B Zhou, A Gyenis et al. Landau quantization and quasipartical interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater, 13, 851(2014).

    [6] M Neupane, S Y Xu, R Sankar et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 5, 3786(2014).

    [7] A C Potter, I Kimchi, A Vishwanath. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat Commun, 5, 5161(2014).

    [8] L P He, X C Hong, J K Dong et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett, 113, 246402(2014).

    [9] T Liang, Q Gibson, M N Ali et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater, 14, 280(2015).

    [10] Y F Zhao, H W Liu, C L Zhang et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys Rev X, 5, 031037(2015).

    [11] Z J Jiang, D Zhao, Z Jin et al. Angular-dependent phase factor of Shubnikov-de Haas oscillations in the Dirac semimetal Cd3As2. Phys Rev Lett, 115, 226401(2015).

    [12] P J W Moll, N L Nair, T Helm et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 535, 366(2016).

    [13] C Zhang, A Narayan, S H Lu et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat Commun, 8, 1272(2017).

    [14] C M Wang, H P Sun, H Z Lu et al. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys Rev Lett, 119, 136806(2017).

    [15] M Uchida, Y Nakazawa, S Nishihaya et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat Commun, 8, 2274(2017).

    [16] T Schumann, L Galletti, D A Kealhofer et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys Rev Lett, 120, 016801(2018).

    [17] M Goyal, L Galletti, S Salmani-Rezaie et al. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater, 6, 026105(2018).

    [18] C Zhang, Y Zhang, X Yuan et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 331, 565(2019).

    [19] B C Lin, S Wang, S Wiedmann et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys Rev Lett, 122, 036602(2019).

    [20] Y Zhang, C Zhang, H X Gao et al. Large Hall angle-driven magneto-transport phenomena in topological Dirac semimetal Cd3As2. Appl Phys Lett, 113, 072104(2018).

    [21] S Nishihaya, M Uchida, Y Nakazawa et al. Quantized surface transport in topological Dirac semimetal films. Nat Commun, 10, 2564(2019).

    [22] C Z Li, L X Wang, H W Liu et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat Commun, 6, 10137(2015).

    [23] H Li, H T He, H Z Lu et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat Commun, 7, 10301(2016).

    [24] L Aggarwal, A Gaurav, G S Thakur et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat Mater, 15, 32(2016).

    [25] H Wang, H C Wang, H W Liu et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat Mater, 15, 38(2016).

    [26] A Q Wang, C Z Li, C Li et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys Rev Lett, 121, 237701(2018).

    [27] C Huang, B T Zhou, H Q Zhang et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat Commun, 10, 2217(2019).

    [28] L X Wang, C Z Li, D P Yu et al. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat Commun, 7, 10769(2016).

    [29] L X Wang, S Wang, J G Li et al. Universal conductance fluctuation in Dirac semimetal Cd3As2 nanowires. Phys Rev B, 94, 161402(2016).

    [30] S Wang, B C Lin, W Z Zheng et al. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys Rev Lett, 120, 257701(2018).

    [31] T Zhou, C Zhang, H S Zhang et al. Enhanced thermoelectric properties of the Dirac semimeatl Cd3As2. Inorg Chem Front, 3, 1637(2016).

    [32] Z Z Jia, C Z Li, X Q Li et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat Commun, 7, 13013(2016).

    [33] C H Zhu, F Q Wang, Y F Meng et al. A robust and tunable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun, 8, 14111(2017).

    [34] Q S Wang, C Z Li, S F Ge et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett, 17, 834(2017).

    [35] Y W Liu, C Zhang, X Yuan et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater, 7, e221(2015).

    [36] C Z Li, J G Li, L X Wang et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates. ACS Nano, 10, 6020(2016).

    [37] M Goyal, H Kim, T Schumann et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys Rev Mater, 3, 064204(2019).

    [38] H Jin, Y Dai, Y D Ma et al. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal Cd3As2. J Mater Chem C, 3, 3547(2015).

    [39] Y W Liu, R Tiwari, A Narayan et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. Phys Rev B, 97, 085303(2018).

    [40] X Yuan, P H Chen, L Q Zhang et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett, 17, 2211(2017).

    [41] Y Sun, Y F Meng, R H Dai et al. Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping. Opt Lett, 44, 4103(2019).

    [42] V S Zakhvalinskii, T B Nikulicheva, E Lahderanta et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1–xyZnxMny)3As2 solid solutions. J Phys Condens Matter, 29, 455701(2017).

    [43] T Schumann, M Goyal, H Kim et al. Molecular beam epitaxy of Cd3As2 on a III–V substrate. APL Mater, 4, 126110(2016).

    [44] Y Nakazawa, M Uchida, S Nishihaya et al. Molecular beam epitaxy of three-dimensionally thick Dirac semimetal Cd3As2 films. APL Mater, 7, 071109(2019).

    [45] D A Kealhofer, H Kim, T Schumann. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys Rev Mater, 3, 031201(2019).

    [46] H L Wang, J L Ma, X Z Yu et al. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures. J Phys D, 50, 025003(2017).

    [47] H L Wang, J L Ma, J H Zhao. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J Semicond, 40, 092501(2019).

    Hailong Wang, Jialin Ma, Qiqi Wei, Jianhua Zhao. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. Journal of Semiconductors, 2020, 41(7): 072903
    Download Citation