• Opto-Electronic Advances
  • Vol. 4, Issue 9, 210017-1 (2021)
Ziwei Li*, Wen Yang, Ming Huang, Xin Yang, Chenguang Zhu, Chenglin He, Lihui Li, Yajuan Wang, Yunfei Xie, Zhuoran Luo, Delang Liang, Jianhua Huang, Xiaoli Zhu, Xiujuan Zhuang, Dong Li, and Anlian Pan
Author Affiliations
  • Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.29026/oea.2021.210017 Cite this Article
    Ziwei Li, Wen Yang, Ming Huang, Xin Yang, Chenguang Zhu, Chenglin He, Lihui Li, Yajuan Wang, Yunfei Xie, Zhuoran Luo, Delang Liang, Jianhua Huang, Xiaoli Zhu, Xiujuan Zhuang, Dong Li, Anlian Pan. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors[J]. Opto-Electronic Advances, 2021, 4(9): 210017-1 Copy Citation Text show less
    References

    [1] Z Zhang, P Lin, QL Liao, Z Kang, HN Si et al. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv Mater, 31, 1806411(2019).

    [2] D Jariwala, TJ Marks, MC Hersam. Mixed-dimensional van der Waals heterostructures. Nat Mater, 16, 170-181(2017).

    [3] QS Zeng, Z Liu. Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures. Adv Electron Mater, 4, 1700335(2018).

    [4] C Hu, DD Dong, XK Yang, KK Qiao, D Yang et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv Funct Mater, 27, 1603605(2017).

    [5] XF Song, XH Liu, DJ Yu, CX Huo, JP Ji et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl Mater Interfaces, 10, 2801-2809(2018).

    [6] TF Yang, X Wang, BY Zheng, ZY Qi, C Ma et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano, 13, 7996-8003(2019).

    [7] F Li, YX Feng, ZW Li, C Ma, JY Qu et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv Mater, 31, 1901351(2019).

    [8] F Prins, AJ Goodman, WA Tisdale. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett, 14, 6087-6091(2014).

    [9] Z Lin, BR Carvalho, E Kahn, RT Lv, R Rao et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater, 3, 22002(2016).

    [10] S Bertolazzi, S Bonacchi, GJ Nan, A Pershin, D Beljonne et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv Mater, 29, 1606760(2017).

    [11] DA Nguyen, HM Oh, NT Duong, S Bang, SJ Yoon et al. Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots. ACS Appl Mater Interfaces, 10, 10322-10329(2018).

    [12] ZW Li, CX Liu, X Rong, Y Luo, HT Cheng et al. Tailoring MoS2 valley-polarized photoluminescence with super chiral near-field. Adv Mater, 30, 1801908(2018).

    [13] ZW Li, Y Li, TY Han, XL Wang, Y Yu et al. Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling. ACS Nano, 11, 1165-1171(2017).

    [14] HT Ying, X Li, HM Wang, YR Wang, X Hu et al. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv Opt Mater, 8, 2000430(2020).

    [15] HL Hou, XW Zhang. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem Eng J, 395, 125030(2020).

    [16] G Konstantatos, M Badioli, L Gaudreau, J Osmond, M Bernechea et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotech, 7, 363-368(2012).

    [17] DS Zheng, JL Wang, WD Hu, L Liao, HH Fang et al. When nanowires meet ultrahigh ferroelectric field−high-performance full-depleted nanowire photodetectors. Nano Lett, 16, 2548-2555(2016).

    [18] WJ Luo, QC Weng, MS Long, P Wang, F Gong et al. Room-temperature single-photon detector based on single nanowire. Nano Lett, 18, 5439-5445(2018).

    [19] D Kufer, T Lasanta, M Bernechea, FHL Koppens, G Konstantatos. Interface engineering in hybrid quantum dot–2D phototransistors. ACS Photonics, 3, 1324-1330(2016).

    [20] AA Bessonov, M Allen, YL Liu, S Malik, J Bottomley et al. Compound quantum dot-perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano, 11, 5547-5557(2017).

    [21] CR Kagan, E Lifshitz, EH Sargent, DV Talapin. Building devices from colloidal quantum dots. Science, 353, aac5523(2016).

    [22] HM Wang, CH Li, PF Fang, ZL Zhang, JZ Zhang. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem Soc Rev, 47, 6101-6127(2018).

    [23] YPV Subbaiah, KJ Saji, A Tiwari. Atomically thin MoS2: a versatile nongraphene 2D material. Adv Funct Mater, 26, 2046-2069(2016).

    [24] YC Cheng, HJW Li, B Liu, LY Jiang, M Liu et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small, 16, 2005217(2020).

    [25] HL Wu, Z Kang, ZH Zhang, Z Zhang, HN Si et al. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv Funct Mater, 28, 1802015(2018).

    [26] HL Wu, HN Si, ZH Zhang, Z Kang, PW Wu et al. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv Sci, 5, 1801219(2018).

    [27] LW Zhang, SL Shen, M Li, LY Li, JB Zhang et al. Strategies for air-stable and tunable monolayer MoS2-based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv Opt Mater, 7, 1801744(2019).

    [28] P Luo, FW Zhuge, FK Wang, LY Lian, KL Liu et al. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano, 13, 9028-9037(2019).

    [29] X Tang, KWC Lai. Graphene/HgTe quantum-dot photodetectors with gate-tunable infrared response. ACS Appl Nano Mater, 2, 6701-6706(2019).

    [30] I Nikitskiy, S Goossens, D Kufer, T Lasanta, G Navickaite et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat Commun, 7, 11954(2016).

    [31] H Liu, C Wang, T Wang, XM Hu, DM Liu et al. Controllable interlayer charge and energy transfer in perovskite quantum dots/transition metal dichalcogenide heterostructures. Adv Mater Interfaces, 6, 1901263(2019).

    [32] SK Zhang, XD Wang, Y Chen, GJ Wu, YC Tang et al. Ultrasensitive hybrid MoS2-ZnCdSe quantum dot photodetectors with high gain. ACS Appl Mater Interfaces, 11, 23667-23672(2019).

    [33] S Ahn, WJ Chen, MA Moreno-Gonzalez, M Lockett, JY Wang et al. Enhanced charge transfer and responsivity in hybrid quantum dot/graphene photodetectors using ZnO as intermediate electron-collecting layer. Adv Electron Mater, 6, 2000014(2020).

    [34] GL Ye, YJ Gong, JH Lin, B Li, YM He et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett, 16, 1097-1103(2016).

    [35] SS Li, YC Lin, W Zhao, J Wu, Z Wang et al. Vapor-liquid-solid growth of monolayer MoS2 nanoribbons. Nat Mater, 17, 535-542(2018).

    [36] P Liu, XQ Zhu, C Feng, M Huang, J Li et al. Enhanced p-type behavior in the hybrid structure of graphene quantum dots/2D-WSe2. Appl Phys Lett, 111, 111603(2017).

    [37] H Cho, SH Jeong, MH Park, YH Kim, C Wolf et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350, 1222-1225(2015).

    [38] ZJ Ning, XW Gong, R Comin, G Walters, FJ Fan et al. Quantum-dot-in-perovskite solids. Nature, 523, 324-328(2015).

    [39] IW Cho, MY Ryu. Enhancement of luminescence properties and stability in perovskite hybrid structure with CdSe/ZnS quantum dots. APL Mater, 7, 051112(2019).

    [40] IW Cho, MY Ryu. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Sci Rep, 9, 18433(2019).

    [41] JM Lanzafame, RJD Miller, AA Muenter, BA Parkinson. Ultrafast charge-transfer dynamics at tin disulfide surfaces. J Phys Chem, 96, 2820-2826(1992).

    [42] HY Shi, RS Yan, S Bertolazzi, J Brivio, B Gao et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7, 1072-1080(2013).

    [43] B Liu, WJ Zhao, ZJ Ding, I Verzhbitskiy, LJ Li et al. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects. Adv Mater, 28, 6457-6464(2016).

    [44] KF Mak, KL He, C Lee, GH Lee, J Hone et al. Tightly bound trions in monolayer MoS2. Nat Mater, 12, 207-211(2013).

    [45] J Suh, TE Park, DY Lin, DY Fu, J Park et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett, 14, 6976-6982(2014).

    [46] JS Ross, SF Wu, HY Yu, NJ Ghimire, AM Jones et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 4, 1474(2013).

    [47] S Mouri, Y Miyauchi, K Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 13, 5944-5948(2013).

    [48] L Li, WK Wang, Y Chai, HQ Li, ML Tian et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv Funct Mater, 27, 1701011(2017).

    [49] OJ Island, SI Blanter, M Buscema, der van, A Castellanos-Gomez. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett, 15, 7853-7858(2015).

    Ziwei Li, Wen Yang, Ming Huang, Xin Yang, Chenguang Zhu, Chenglin He, Lihui Li, Yajuan Wang, Yunfei Xie, Zhuoran Luo, Delang Liang, Jianhua Huang, Xiaoli Zhu, Xiujuan Zhuang, Dong Li, Anlian Pan. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors[J]. Opto-Electronic Advances, 2021, 4(9): 210017-1
    Download Citation