• Photonics Research
  • Vol. 10, Issue 4, 932 (2022)
Beichen Wang1、†, Zijiao Yang1、2、†, Shuman Sun1, and Xu Yi1、2、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
  • 2Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
  • show less
    DOI: 10.1364/PRJ.450103 Cite this Article Set citation alerts
    Beichen Wang, Zijiao Yang, Shuman Sun, Xu Yi. Radio-frequency line-by-line Fourier synthesis based on optical soliton microcombs[J]. Photonics Research, 2022, 10(4): 932 Copy Citation Text show less
    References

    [1] Z. Jiang, C.-B. Huang, D. E. Leaird, A. M. Weiner. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photonics, 1, 463-467(2007).

    [2] S. T. Cundiff, A. M. Weiner. Optical arbitrary waveform generation. Nat. Photonics, 4, 760-766(2010).

    [3] D. Goswami. Optical pulse shaping approaches to coherent control. Phys. Rep., 374, 385-481(2003).

    [4] M. C. Stowe, F. C. Cruz, A. Marian, J. Ye. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett., 96, 153001(2006).

    [5] I. Barmes, S. Witte, K. S. Eikema. Spatial and spectral coherent control with frequency combs. Nat. Photonics, 7, 38-42(2013).

    [6] D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, S. Yoo. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Opt. Express, 17, 15911-15925(2009).

    [7] H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, L.-H. Peng. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science, 331, 1165-1168(2011).

    [8] V. Durán, S. Tainta, V. Torres-Company. Ultrafast electrooptic dual-comb interferometry. Opt. Express, 23, 30557-30569(2015).

    [9] V. Durán, P. A. Andrekson, V. Torres-Company. Electro-optic dual-comb interferometry over 40 nm bandwidth. Opt. Lett., 41, 4190-4193(2016).

    [10] F. Ferdous, D. E. Leaird, C.-B. Huang, A. Weiner. Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization. Opt. Lett., 34, 3875-3877(2009).

    [11] X. Zhou, X. Zheng, H. Wen, H. Zhang, B. Zhou. Pair-by-pair pulse shaping for optical arbitrary waveform generation by dual-comb heterodyne. Opt. Lett., 38, 5331-5333(2013).

    [12] F. Yin, Z. Yin, X. Xie, Y. Dai, K. Xu. Broadband radio-frequency signal synthesis by photonic-assisted channelization. Opt. Express, 29, 17839-17848(2021).

    [13] V. Ataie, D. Esman, B.-P. Kuo, N. Alic, S. Radic. Subnoise detection of a fast random event. Science, 350, 1343-1346(2015).

    [14] I. Coddington, W. Swann, N. Newbury. Coherent linear optical sampling at 15 bits of resolution. Opt. Lett., 34, 2153-2155(2009).

    [15] J.-W. Lin, C.-L. Lu, H.-P. Chuang, F.-M. Kuo, J.-W. Shi, C.-B. Huang, C.-L. Pan. Photonic generation and detection of W-band chirped millimeter-wave pulses for radar. IEEE Photon. Technol. Lett., 24, 1437-1439(2012).

    [16] P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, A. Bogoni. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).

    [17] I. S. Lin, J. D. McKinney, A. M. Weiner. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microw. Wireless Compon. Lett., 15, 226-228(2005).

    [18] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [19] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 4, 117-122(2010).

    [20] A. Rashidinejad, A. M. Weiner. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability. J. Lightwave Technol., 32, 3383-3393(2014).

    [21] A. Rashidinejad, D. E. Leaird, A. M. Weiner. Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability. Opt. Express, 23, 12265-12273(2015).

    [22] A. Rashidinejad, Y. Li, A. M. Weiner. Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation. IEEE J. Quantum Electron., 52, 0600117(2015).

    [23] J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, M. Qi. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun., 6, 5957(2015).

    [24] M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Photonic rf arbitrary waveform generator based on a soliton crystal micro-comb source. J. Lightwave Technol., 38, 6221-6226(2020).

    [25] T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, T. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [26] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, T. Kippenberg. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [27] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [28] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [29] A. Rahim, J. Goyvaerts, B. Szelag, J.-M. Fedeli, P. Absil, T. Aalto, M. Harjanne, C. Littlejohns, G. Reed, G. Winzer, S. Lischke, L. Zimmermann, D. Knoll, D. Geuzebroek, A. Leinse, M. Geiselmann, M. Zervas, H. Jans, A. Stassen, C. Domínguez, P. Muñoz, D. Domenech, A. L. Giesecke, M. C. Lemme, R. Baets. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron., 25, 8200818(2019).

    [30] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature, 562, 101-104(2018).

    [31] C. O. de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens, B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386-393(2020).

    [32] Q. Yu, J. Gao, N. Ye, B. Chen, K. Sun, L. Xie, K. Srinivasan, M. Zervas, G. Navickaite, M. Geiselmann, A. Beling. Heterogeneous photodiodes on silicon nitride waveguides. Opt. Express, 28, 14824-14830(2020).

    [33] A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, M. Lipson. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

    [34] B. Wang, Z. Yang, X. Zhang, X. Yi. Vernier frequency division with dual-microresonator solitons. Nat. Commun., 11, 3975(2020).

    [35] M. H. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 3, 20-25(2016).

    [36] J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, S. B. Papp. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [37] W. Kester. Understand SINAD, ENOB, SNR, THD, THD+ N, and SFDR so you don’t get lost in the noise floor(2009).

    [38] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [39] J. F. Bauters, J. R. Adleman, M. J. Heck, J. E. Bowers. Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides. Appl. Phys. A, 116, 427-432(2014).

    [40] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

    [41] Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, K. Srinivasan. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [42] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [43] P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [44] X. Yi, Q.-F. Yang, K. Y. Yang, K. Vahala. Imaging soliton dynamics in optical microcavities. Nat. Commun., 9, 1(2018).

    [45] C. Bao, M.-G. Suh, K. Vahala. Microresonator soliton dual-comb imaging. Optica, 6, 1110-1116(2019).

    [46] B. Wang, J. S. Morgan, K. Sun, M. Jahanbozorgi, Z. Yang, M. Woodson, S. Estrella, A. Beling, X. Yi. Towards high-power, high-coherence, integrated photonic mmwave platform with microcavity solitons. Light Sci. Appl., 10, 1(2021).

    [47] S. Zhang, J. M. Silver, X. Shang, L. Del Bino, N. M. Ridler, P. Del’Haye. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).

    [48] T. Tetsumoto, F. Ayano, M. Yeo, J. Webber, T. Nagatsuma, A. Rolland. 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a low noise microwave reference. Opt. Lett., 45, 4377-4380(2020).

    [49] D. Jeong, D. Kwon, I. Jeon, I. H. Do, J. Kim, H. Lee. Ultralow jitter silica microcomb. Optica, 7, 1108-1111(2020).

    Beichen Wang, Zijiao Yang, Shuman Sun, Xu Yi. Radio-frequency line-by-line Fourier synthesis based on optical soliton microcombs[J]. Photonics Research, 2022, 10(4): 932
    Download Citation