Volume: 3 Issue 2
4 Article(s)

Export citation format
Optical and Photonic Materials
Inorganic halide perovskites for lighting and visible light communication
Shuangyi Zhao, Qionghua Mo, Baiqian Wang, Wensi Cai, Ru Li, and Zhigang Zang
Inorganic halide perovskites (IHPs) have received substantial attention due to their unique optoelectronic properties. Among all the intriguing performance, the efficient luminescence of IHPs enables the practical application of white light-emitting diodes (WLEDs) for lighting. During the last decade, IHP-based white lighting sources with a high luminesce and a broad color gamut have been developed as strong competitors to conventional and classic WLEDs based on rare-earth phosphors and blue LED chips. Thus, it inspires us to give an overview of the emerging progress of IHP WLEDs that can function as lighting sources. Here, in this review, the generation of luminescent properties and white light in IHPs are first presented. Then, both photoluminescence and electroluminescence WLEDs with IHPs emitters, including both lead-based and lead-free IHPs, are synthetically discussed to exhibit their advantages. Furthermore, the efforts on the optical performance enhancement of IHPs in WLEDs are demonstrated and summarized. Apart from WLEDs, visible light communication based on IHPs featuring efficient luminescence is proposed to highlight their promising potential in lighting communication. Finally, some perspectives on the evolution and challenges are described, followed by an inspirational outlook on their future development.
Review of Optics: a virtual journal
  • Publication Date: Mar. 25, 2022
  • Vol. 10 Issue 4 04001039 (2022)
Tunable metasurfaces towards versatile metalenses and metaholograms: a review
Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, and Junsuk Rho
Metasurfaces have attracted great attention due to their ability to manipulate the phase, amplitude, and polarization of light in a compact form. Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements. Two interesting applications, in particular, are to vary the focal point of metalenses and to switch between holographic images. We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms, including the basic working principles, advantages, and disadvantages of each working mechanism. We classify the tunable stimuli based on the light source and electrical bias, as well as others such as thermal and mechanical modulation. We conclude by summarizing the recent progress of metalenses and metaholograms, and providing our perspectives for the further development of tunable metasurfaces.
Review of Optics: a virtual journal
  • Publication Date: Mar. 07, 2022
  • Vol. 4 Issue 2 024001 (2022)
Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances
Lingqi Li, Weijin Kong, and Feng Chen
Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications. By efficient modification of refractive indices of dielectric crystals, optical waveguides with diverse configurations have been produced by femtosecond laser writing. The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals. The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions. In addition, regardless of the complexity of crystal refractive index changes induced by ultrafast pulses, several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips. Some intriguing devices, e.g., waveguide lasers, wavelength converters, and quantum memories, have been made, exhibiting potential for applications in various areas. Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area, including the fundamentals, fabrication, and selected photonic applications.
Review of Optics: a virtual journal
  • Publication Date: Mar. 29, 2022
  • Vol. 4 Issue 2 024002 (2022)
Applications of thin-film lithium niobate in nonlinear integrated photonics
Milad Gholipour Vazimali, and Sasan Fathpour
Photonics on thin-film lithium niobate (TFLN) has emerged as one of the most pursued disciplines within integrated optics. Ultracompact and low-loss optical waveguides and related devices on this modern material platform have rejuvenated the traditional and commercial applications of lithium niobate for optical modulators based on the electro-optic effect, as well as optical wavelength converters based on second-order nonlinear effects, e.g., second-harmonic, sum-, and difference-frequency generations. TFLN has also created vast opportunities for applications and integrated solutions for optical parametric amplification and oscillation, cascaded nonlinear effects, such as low-harmonic generation; third-order nonlinear effects, such as supercontinuum generation; optical frequency comb generation and stabilization; and nonclassical nonlinear effects, such as spontaneous parametric downconversion for quantum optics. Recent progress in nonlinear integrated photonics on TFLN for all these applications, their current trends, and future opportunities and challenges are reviewed.
Review of Optics: a virtual journal
  • Publication Date: May. 30, 2022
  • Vol. 4 Issue 3 034001 (2022)