• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922014 (2022)
Jingyuan Fu, Rui Su*, Xiaodong Ruan, and Xin Fu
Author Affiliations
  • State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.0922014 Cite this Article Set citation alerts
    Jingyuan Fu, Rui Su, Xiaodong Ruan, Xin Fu. Research Status and Progress of Contamination Control in Immersion Liquid System of Immersion Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922014 Copy Citation Text show less
    References

    [1] Fu X, Chen H, Chen W Y et al. Developments and prospects of immersion control system in immersion lithography machine[J]. Journal of Mechanical Engineering, 46, 170-175(2010).

    [2] Hong X[M]. Introduction to semiconductor manufacturing technology(2012).

    [3] Owa S, Nagasaka H. Advantage and feasibility of immersion lithography[J]. Nanolithography, MEMS, and MOEMS, 3, 97-103(2004).

    [4] Mulkens J, Flagello D G, Streefkerk B et al. Benefits and limitations of immersion lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 3, 104-114(2004).

    [5] Luehrmann P F,, van Oorschot P, Jasper H et al. 0.35-μm lithography using off-axis illumination[J]. Proceedings of SPIE, 1927, 103-124(1993).

    [6] Levenson M D. Extending the lifetime of optical lithography technologies with wavefront engineering[J]. Japanese Journal of Applied Physics, 33, 6765-6773(1994).

    [7] Weng S S. 90 nm process and its relevant technology[J]. Semiconductor Information, 40, 40-44(2003).

    [8] Yuan Q, Wang X, Shi W et al. Development of immersion lithography[J]. Laser & Optoelectronics Progress, 43, 13-20(2006).

    [9] Lin B J. Immersion lithography and its impact on semiconductor manufacturing[J]. Nanolithography, MEMS, and MOEMS, 3, 377-500(2004).

    [10] El-Morsi M, Nellis G, Schuetter S et al. Full wafer simulation of immersion fluid heating[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23, 2596-2600(2005).

    [11] Molecular ExpressionsTM. Giovanni Battista Amici (1786-1863)[EB/OL]. https://micro.magnet.fsu.edu/optics/timeline/people/amici.html

    [12] Tabarelli W, Lobach E W. Apparatus for the photolithographic manufacture of integrated circuit elements[P].

    [13] Yoshio F, Nobutaka M. Projection exposure method and system[P].

    [14] Owa S, Nagasaka H. Immersion lithography; its potential performance and issues[J]. Proceedings of SPIE, 5040, 724-733(2003).

    [15] Bouchoms I, Leenders M, Kuit J J et al. Extending 1.35 NA immersion lithography down to 1x nm production nodes[J]. Proceedings of SPIE, 8326, 83260L(2012).

    [16] Brandt P, Sardana C, Ibbotson D et al. Comparison between e-beam direct write and immersion lithography for 20 nm node[J]. Proceedings of SPIE, 9423, 942311(2015).

    [17] Wei Y Y, Brandl S, Goodwin F. Formation mechanism of 193 nm immersion defects and defect reduction strategies[J]. Proceedings of SPIE, 6923, 69231Y(2008).

    [18] Fu X, Huang Y, Hu L et al. Flow behavior control in immersion lithography[J]. Flow Measurement and Instrumentation, 53, 190-203(2017).

    [19] Nellis G F, El-Morsi M S, van Peski C K et al. Contamination transport in immersion lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 5, 013007(2006).

    [20] Gaugiran S, Feilleux R, Sourd C et al. Leaching mechanisms in immersion lithography with or without top coat[J]. Microelectronic Engineering, 84, 1054-1057(2007).

    [21] Takahashi N, Shimura S, Kawasaki T. Transfer mechanism of defects on topcoat to resist pattern in immersion lithography process and effects on etching process[J]. Proceedings of SPIE, 6519, 65191Z(2007).

    [22] Wei Y Y, Brainard R L[M]. Advanced processes for 193-nm immersion lithography(2009).

    [23] Niiyama T, Kawai A. Formation factors of watermark for immersion lithography[C], 32-33(2005).

    [24] Abdo A, Nellis G, Wei A et al. Optimizing the fluid dispensing process for immersion lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22, 3454-3458(2004).

    [25] Chen W Y, Chen Y, Zou J et al. Effect of liquid dispensing on flow field for immersion lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27, 2192-2199(2009).

    [26] Chen H, Chen W Y, Zou J et al. Simulation of the velocity distribution for immersion lithography[C], 1566-1571(2009).

    [27] Ma L, Wu Q, Dong L S et al. Development defect model for immersion photolithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17, 023502(2018).

    [28] Ma L, Xu B Q, Wu Q et al. Optimized parameters selected on the basis of the development defect model[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17, 043508(2018).

    [29] Streefkerk B, Mulkens J, Moerman R et al. A dive into clear water: immersion defect capabilities[J]. Proceedings of SPIE, 6154, 61540S(2006).

    [30] Burnett H, Shedd T, Nellis G et al. Control of the receding meniscus in immersion lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23, 2611-2616(2005).

    [31] Carcasi M, Hatakeyama S, Nafus K et al. Defectivity reduction by optimization of 193-nm immersion lithography using an interfaced exposure-track system[J]. Proceedings of SPIE, 6153, 61533J(2006).

    [32] Nakagawa H, Nakamura A, Dougauchi H et al. Improvement of watermark defect in immersion lithography: mechanism of watermark defect formation and its reduction by using alkaline-soluble immersion topcoat[J]. Proceedings of SPIE, 6153, 61531R(2006).

    [33] Tomita T, Shimoaoki T, Enomoto M et al. An investigation on defect-generation conditions in immersion lithography[J]. Proceedings of SPIE, 6153, 61533M(2006).

    [34] Farys V, Gaugiran S, Cruau D et al. Investigation on immersion defectivity root cause[J]. Proceedings of SPIE, 6533, 653308(2007).

    [35] Ercken M, Gronheid R, Foubert P et al. Investigation of new slection citeria for an otimized imersion process[J]. Journal of Photopolymer Science and Technology, 19, 539-546(2006).

    [36] Wei Y. Non-lensing defects and defect reduction for 193i[EB/OL]. https://spie.org/news/0976-non-lensing-defects-and-defect-reduction-for-193i?SSO=1

    [37] Kanna S, Inabe H, Yamamoto K et al. Materials and process parameters on ArF immersion defectivity study[J]. Proceedings of SPIE, 6153, 615308(2006).

    [38] Brandl S, Watso R, Pierson B et al. Investigation of immersion related defects using pre- and post-wet experiments[J]. Proceedings of SPIE, 6154, 61540T(2006).

    [39] Terai M, Kumada T, Ishibashi T et al. Mechanism of immersion specific defects with high receding-angle topcoat[J]. Proceedings of SPIE, 6519, 65191S(2007).

    [40] Liang F J, Chang H, Shiu L H et al. Immersion defect reduction, part I: analysis of water leaks in an immersion scanner[J]. Proceedings of SPIE, 6520, 65204U(2007).

    [41] Kocsis M, van den Heuvel D, Gronheid R et al. Immersion specific defect mechanisms: findings and recommendations for their control[J]. Proceedings of SPIE, 6154, 615409(2006).

    [42] Ishibashi T, Hanawa T, Suganaga T et al. Studies of the mechanism for immersion specific defects[J]. Proceedings of SPIE, 6153, 61533I(2006).

    [43] Foubert P, Kocsis M, Gronheid R et al. Measurement and evaluation of water uptake by resists, top coats, stacks, and correlation with watermark defects[J]. Proceedings of SPIE, 6519, 65190E(2007).

    [44] Otoguro A, Lee J W, Itani T et al. Analysis of 193 nm immersion specific defects[J]. Proceedings of SPIE, 6153, 61531P(2006).

    [45] Enomoto M, Hatakeyama S, Niwa T et al. 193 nm immersion process defect generation and reduction mechanism investigation using analytical methods[J]. Proceedings of SPIE, 6153, 61533L(2006).

    [46] Wallraff G M, Larson C E, Breyta G et al. The effect of photoresist/topcoat properties on defect formation in immersion lithography[J]. Proceedings of SPIE, 6153, 61531M(2006).

    [47] Tamura T, Onoda N, Fujita M et al. Focus, dynamics, and defectivity performance at wafer edge in immersion lithography[J]. Proceedings of SPIE, 6924, 692419(2008).

    [48] Bi D D, Zhang L C, Shi G. Optical coatings for projection objective immersion lithography[J]. Chinese Optics, 11, 745-764(2018).

    [49] Ma X Z, Zhang F, Huang H J. Correction technology for illumination field intensity profile in photolithography machine[J]. Chinese Journal of Lasers, 48, 2005001(2021).

    [50] Grenon B J, Brinkley D. Identification of a new source of reticle contamination[J]. Proceedings of SPIE, 9985, 998516(2016).

    [51] Stepanenko N, Kim H W, Kishimura S et al. Top coat or no top coat for immersion lithography?[J]. Proceedings of SPIE, 6153, 615304(2006).

    [52] Liberman V, Switkes M, Rothschild M et al. Studies of consequences of photo-acid generator leaching in 193 nm immersion lithography[J]. Proceedings of SPIE, 6154, 615416(2006).

    [53] Liberman V, Rothschild M, Palmacci S T et al. Impact of photoacid generator leaching on optics photocontamination in 193-nm immersion lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 6, 013001(2007).

    [54] Liberman V, Palmacci S T, Hardy D E et al. Controlled contamination studies in 193-nm immersion lithography[J]. Proceedings of SPIE, 5754, 148-153(2005).

    [55] Gou L J, Nair V, Mori H et al. Reduction of micro-bridging defects for 193 nm immersion resist[J]. Proceedings of SPIE, 7972, 79721P(2011).

    [56] Sado M, Teratani T, Fujii H et al. Influences of water on photoresist surface in immersion lithography technology[J]. Applied Surface Science, 255, 1018-1021(2008).

    [57] Oh S K, Kim J Y, Jung Y H et al. Studies on leaching of photoresist components by water[J]. Proceedings of SPIE, 5753, 790-798(2005).

    [58] Dammel R R, Pawlowski G, Romano A et al. Resist component leaching in 193-nm immersion lithography[J]. Proceedings of SPIE, 5753, 95-101(2005).

    [59] Hanawa T, Suganaga T, Ishibashi T et al. Studies on immersion defects using mimic immersion experiments[J]. Proceedings of SPIE, 6153, 61531O(2006).

    [60] Conley W, LeSuer R J, Fan F F et al. Understanding the photoresist surface-liquid interface for ArF immersion lithography[J]. Proceedings of SPIE, 5753, 64-77(2005).

    [61] Takahara H, Tsugane K. Trace metallic contamination analysis on wafer edge and bevel by TXRF and VPD-TXRF[J]. Solid State Phenomena, 145/146, 105-108(2009).

    [62] Evans Analytical Group. Analytical resolution vs detection limit[EB/OL]. VsDetectionLimit. http://mcf.tamu.edu/wp-content/uploads/2017/09/EAG_Resolution

    [63] Seltmann R, Wirtz R. Method and system for detecting paricle contamination in an immersion lithography tool[P].

    [64] Pollentier I, Ercken M, Foubert P et al. Resist profile control in immersion lithography using scatterometry measurements[J]. Proceedings of SPIE, 5754, 129-140(2005).

    [65] Shiu L H, Liang F J, Chang H et al. Immersion defect reduction, part II: the formation mechanism and reduction of patterned defects[J]. Proceedings of SPIE, 6520, 652012(2007).

    [66] Robinson C, Bright J, Corliss D et al. Monitoring defects at wafer’s edge for improved immersion lithography performance[J]. Proceedings of SPIE, 6924, 69244O(2008).

    [67] Liberman V, Rothschild M, Palmacci S T et al. Laser durability studies of high index immersion fluids: fluid degradation and optics contamination effects[J]. Proceedings of SPIE, 6520, 652035(2007).

    [68] Zhang L B, Ma L, Chen R et al. Pattern quality and defect evaluation based on cross correlation and power spectral density methods[J]. Journal of Vacuum Science & Technology B, 36, 052902(2018).

    [69] Englard I, Stegen R, Vanoppen P et al. Novel approach for immersion lithography defectivity control to increase productivity[J]. Proceedings of SPIE, 6922, 69223U(2008).

    [70] Varanasi R, Mesawich M, Connor P et al. Advanced lithographic filtration and contamination control for 14 nm node and beyond semiconductor processes[J]. Proceedings of SPIE, 10146, 101462B(2017).

    [71] Varanasi R, Umeda T, Mesawich M et al. Enhanced cleaning for the point-of-use filter and its effectiveness on wafer defectivity in immersion ArF lithography process[J]. Journal of Photopolymer Science and Technology, 30, 639-643(2017).

    [72] Wu A W, Xia A N. An exploration of the use of fluoropolymers in photofiltration[J]. Proceedings of SPIE, 10960, 109601U(2019).

    [73] Imai A, Tanahashi T, Yamana K et al. Molecular contamination control technologies for high NA 193 nm lithography[J]. Proceedings of SPIE, 6153, 615332(2006).

    [74] Kohyama T, Kaneko F, Miura K et al. Filter technology developments to address defectivity in leading-edge photoresists[J]. Proceedings of SPIE, 10960, 109601X(2019).

    [75] Wu A W, Xia A N, Bayana H. A new tailored point-of-use filter to reduce immersion lithography downtime and defects[J]. Proceedings of SPIE, 10960, 109601Y(2019).

    [76] Chibana T, Kobayashi M, Nakano H et al. Immersion defect performance and particle control method for 45 nm mass production[J]. Proceedings of SPIE, 6924, 69241B(2008).

    [77] Nakano K, Seki R, Sekito T et al. Control and reduction of immersion defectivity for yield enhancement at high volume production[J]. Proceedings of SPIE, 7274, 72741P(2009).

    [78] Watso R D, Laursen T, Pierson B et al. Defect testing using an immersion exposure system to apply immediate pre-exposure and post-exposure water soaks[J]. Proceedings of SPIE, 6520, 65204V(2007).

    [79] Miyahara O, Shimoaoki T, Wakamizu S et al. Defect transfer from immersion exposure process to post processing and defect reduction using novel immersion track system[J]. Proceedings of SPIE, 6519, 651924(2007).

    [80] Matsunaga K, Kondoh T, Kato H et al. Defectivity reduction studies for ArF immersion lithography[J]. Proceedings of SPIE, 6519, 65191T(2007).

    [81] Shigemori K, Wang S P, Tedeschi L et al. Defectivity process optimization on immersion topcoat less resist stacks[J]. Proceedings of SPIE, 7273, 72732B(2009).

    [82] Kobayashi M, Nakano H, Arakawa M et al. Contamination and particle control system in immersion exposure tool[J]. Proceedings of SPIE, 6520, 652014(2007).

    [83] de Jong A M C P, Jansen H, Leenders M H A et al. Lithographic apparatus and contamination removal or prevention method[P].

    [84] Bhattacharyya D, Hong W, Peng K et al. Reduction of extra pattern defects in immersion layer reworks by cleans recipe optimization: CFM: contamination free manufacturing[C], 229-232(2016).

    [85] Chen T N, Korzenski M B, Bilodeau S et al. Environmentally benign in-line cleaning solutions for immersion lithography tools[J]. Solid State Phenomena, 187, 307-310(2012).

    [86] Hao B T, Lang D C. Lens contamination prevention device and method[P].

    [87] Okazaki M, Maas R, Ko S H et al. Wafer edge polishing process for defect reduction during immersion lithography[J]. Proceedings of SPIE, 6922, 69223A(2008).

    [88] Ehara K, Ema T, Yamasaki T et al. CD and defect improvement challenges for immersion processes[J]. Proceedings of SPIE, 7273, 727322(2009).

    [89] Liang F J, Shiu L H, Chen C K et al. Defect reduction with special routing for immersion lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 6, 010501(2007).

    [90] Terai M, Ishibashi T, Hagiwara T et al. Novel wafer bevel treatment for water immersion lithography[J]. Journal of Photopolymer Science and Technology, 21, 665-672(2008).

    [91] Gu Y J, Liu H Y, Yang J L et al. Surface-engraved nanocomposite coatings featuring interlocked reflection-reducing, anti-fogging, and contamination-reducing performances[J]. Progress in Organic Coatings, 127, 366-374(2019).

    [92] Tango N, Yamamoto K, Shirakawa M et al. Challenges and progress in defectivity for advanced ArF lithography process[J]. Journal of Photopolymer Science and Technology, 32, 445-448(2019).

    Jingyuan Fu, Rui Su, Xiaodong Ruan, Xin Fu. Research Status and Progress of Contamination Control in Immersion Liquid System of Immersion Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922014
    Download Citation