• Journal of Semiconductors
  • Vol. 41, Issue 5, 052201 (2020)
Zhongti Sun1、2, Xiwen Chen1、2, and Wanjian Yin1、2、3
Author Affiliations
  • 1College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou 215006, China
  • 2Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
  • 3Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
  • show less
    DOI: 10.1088/1674-4926/41/5/052201 Cite this Article
    Zhongti Sun, Xiwen Chen, Wanjian Yin. Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. Journal of Semiconductors, 2020, 41(5): 052201 Copy Citation Text show less
    References

    [1] Y Sun, N C Giebink, H Kanno et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 440, 908(2006).

    [2] J Luo, X Wang, S Li et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541(2018).

    [3] Z K Tan, R S Moghaddam, M L Lai et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 9, 687(2014).

    [4] W J Yin, T Shi, Y Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 26, 4653(2014).

    [5] H Cho, S H Jeong, M H Park et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350, 1222(2015).

    [6] J Li, S G R Bade, X Shan et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 27, 5196(2015).

    [7] M I Saidaminov, J Almutlaq, S Sarmah et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett, 1, 840(2016).

    [8] J H Cha, J H Han, W Yin et al. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J Phys Chem Lett, 8, 565(2017).

    [9] M De Bastiani, I Dursun, Y Zhang et al. Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals. Chem Mater, 29, 7108(2017).

    [10] D Cortecchia, H A Dewi, J Yin et al. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg Chem, 55, 1044(2016).

    [11] H Yang, Y Zhang, J Pan et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater, 29, 8978(2017).

    [12] J Yang, P Zhang, S H Wei. Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle study. J Phys Chem Lett, 9, 31(2017).

    [13] A M Elseman, A E Shalan, S Sajid et al. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view. ACS Appl Mater Interfaces, 10, 11699(2018).

    [14] T Jun, K Sim, S Iimura et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater, 30, 1804547(2018).

    [15] S Hull, P Berastegui. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides — II: ordered phases within the (AgX)x–(MX)1−x and (CuX)x–(MX)1−x (M = K, Rb and Cs; X = Cl, Br and I) systems. J Solid State Chem, 177, 3156(2004).

    [16] Z Xiao, K Du, W Meng et al. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew Chem Int Ed, 129, 12275(2017).

    [17] P Yang, G Liu, B Liu et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem Commun, 54, 11638(2018).

    [18] L Helmholz, R F Kruh. The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc, 74, 1176(1952).

    [19] F Aguado, F Rodríguez, R Valiente et al. Three-dimensional magnetic ordering in the Rb2CuCl4 layer perovskite—structural correlations. J Phys Condens Matter, 16, 1927(2004).

    [20] A R Lim, S H Kim. Study of the structural phase transitions in RbCuCl3 and CsCuCl3 single crystals with the electric-magnetic-type interactions using a 87Rb and 133Cs nuclear magnetic resonance spectrometer. J Appl Phys, 101, 083519(2007).

    [21] Y Kousaka, T Koyama, M Miyagawa et al. Crystal growth of chiral magnetic material in CsCuCl3. J Phys Conf Ser, 502, 012019(2014).

    [22] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [23] P E Blöchl. Projector augmented-wave method. Phys Rev B, 50, 17953(1994).

    [24] J P Perdew, K Burke, M Ernzerh of. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [25] C Persson, Y J Zhao, S Lany et al. n-type doping of CuInSe2 and CuGaSe2. Phys Rev B, 72, 035211(2005).

    [26] X G Zhao, D Yang, Y Sun et al. Cu–In halide perovskite solar absorbers. J Am Chem Soc, 139, 6718(2017).

    Zhongti Sun, Xiwen Chen, Wanjian Yin. Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. Journal of Semiconductors, 2020, 41(5): 052201
    Download Citation