• Acta Optica Sinica
  • Vol. 41, Issue 1, 0111001 (2021)
Xiang Hao1, Qing Yang1, Cuifang Kuang1、2, and Xu Liu1、2、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
  • show less
    DOI: 10.3788/AOS202141.0111001 Cite this Article Set citation alerts
    Xiang Hao, Qing Yang, Cuifang Kuang, Xu Liu. Optical Super-Resolution Imaging Based on Frequency Shift[J]. Acta Optica Sinica, 2021, 41(1): 0111001 Copy Citation Text show less
    References

    [2] Born M, Wolf E, Hecht E. Principles of optics electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 53, 77-78(2000).

    [3] Mansfield S M, Kino G S. Solid immersion microscope[J]. Applied Physics Letters, 57, 2615-2616(1990).

    [4] Hell S. Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [5] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [6] Blom H, Widengren J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 117, 7377-7427(2017).

    [7] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [8] Möckl L, Lamb D C, Bräuchle C. Super-resolved fluorescence microscopy: Nobel prize in chemistry 2014 for eric betzig, stefan hell, and William E. moerner[J]. Angewandte Chemie International Edition, 53, 13972-13977(2014).

    [9] Hao X. Research on the realization of far-field optical nanoscopy using manipulation of light field[D]. Hangzhou: Zhejiang University(2014).

    [10] Tang M W, Liu X W, Wen Z et al. Far-field superresolution imaging via spatial frequency modulation[J]. Laser & Photonics Reviews, 1900011(2020). http://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201900011

    [11] Cutrona L. Synthetic aperture radar[J]. Radar Handbook, 2, 2333-2346(1990).

    [12] Schwarz C J, Kuznetsova Y. Brueck S R J. Imaging interferometric microscopy[J]. Optics Letters, 28, 1424-1426(2003).

    [13] Lee D J, Weiner A M. Optical phase imaging using a synthetic aperture phase retrieval technique[J]. Optics Express, 22, 9380-9394(2014).

    [14] Kim M, Choi Y, Fang-Yen C et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Optics Letters, 36, 148-150(2011).

    [15] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 9, 2501-2504(1970).

    [16] Paladuga S R C, Prithvi M R. Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm[J]. International Journal of Antennas and Propagation, 2015, 1-9(2015).

    [17] Turpin T M, Gesell L H, Lapides J et al. Theory of the synthetic aperture microscope[J]. Proceedings of SPIE, 2566, 230-240(1995).

    [18] Mico V, Zalevsky Z, García J. Synthetic aperture microscopy using off-axis illumination and polarization coding[J]. Optics Communications, 276, 209-217(2007). http://www.sciencedirect.com/science/article/pii/S003040180700418X

    [19] Hoppe W. Beugung im inhomogenen primärstrahlwellenfeld. III. Amplituden-und phasenbestimmung bei unperiodischen objekten[J]. Acta Crystallogr, 25, 508-514(1969). http://www.onacademic.com/detail/journal_1000035146047610_bc12.html

    [20] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004). http://europepmc.org/abstract/med/15323918

    [22] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [23] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [24] Thibault P, Dierolf M, Bunk O et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 109, 338-343(2009). http://www.sciencedirect.com/science/article/pii/S0304399108003458

    [25] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [26] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000). http://www.tandfonline.com/servlet/linkout?suffix=cit0008&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=10810003

    [27] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [28] Heintzmann R, Huser T. Super-resolution structured illumination microscopy[J]. Chemical Reviews, 117, 13890-13908(2017). http://www.ncbi.nlm.nih.gov/pubmed/29125755

    [29] Demmerle J, Innocent C, North A J et al. Strategic and practical guidelines for successful structured illumination microscopy[J]. Nature Protocols, 12, 988-1010(2017).

    [30] Mudry E, Belkebir K, Girard J et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 6, 312-315(2012). http://www.nature.com/articles/nphoton.2012.83

    [31] Jost A, Tolstik E, Feldmann P et al. Optical sectioning and high resolution in single-slice structured illumination microscopy by thick slice blind-SIM reconstruction[J]. PLoS One, 10, e0132174(2015).

    [32] Ayuk R, Giovannini H, Jost A et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm[J]. Optics Letters, 38, 4723-4726(2013).

    [33] Dong S Y, Nanda P, Shiradkar R et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 22, 20856-20870(2014).

    [34] Lu J, Min W, Conchello J A et al. Super-resolution laser scanning microscopy through spatiotemporal modulation[J]. Nano Letters, 9, 3883-3889(2009). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=19743870

    [35] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement[J]. Journal of the Optical Society of America A, 19, 1599-1609(2002).

    [36] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences, 102, 13081-13086(2005).

    [37] Rego E H, Shao L, Macklin J J et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences, 109, E135-E143(2012).

    [38] Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science et al. 349(6251):aab3500(2015).

    [39] Zhao G Y, Zheng C, Kuang C F et al. Nonlinear focal modulation microscopy[J]. Physical Review Letters, 120, 193901(2018).

    [40] Cao R Z, Kuang C F, Liu Y et al. Superresolution via saturated virtual modulation microscopy[J]. Optics Express, 25, 32364-32379(2017).

    [41] Sheppard C J R. Super-resolution in confocal imaging[J]. Optik International Journal for Light & Electron Optics, 80, 53-54(1988). http://www.researchgate.net/publication/235994020_Super-resolution_in_confocal_imaging

    [42] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).

    [43] super-resolution[J]. Nature Methods. 12(12): i-ii. Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio(2015).

    [44] Roth S, Sheppard C J, Wicker K et al. Optical photon reassignment microscopy (OPRA)[J]. Optical Nanoscopy, 2, 1-6(2013). http://link.springer.com/article/10.1186/2192-2853-2-5

    [45] Korobchevskaya K, Lagerholm B, Colin-York H et al. Exploring the potential of airyscan microscopy for live cell imaging[J]. Photonics, 4, 41(2017). http://www.researchgate.net/publication/318287874_Exploring_the_Potential_of_Airyscan_Microscopy_for_Live_Cell_Imaging/download

    [46] Ge B L, Wang Y F, Huang Y J et al. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection[J]. Optics Letters, 41, 2013-2016(2016).

    [47] Ge B L, Huang Y J, Fang Y et al. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection[J]. Journal of Modern Optics, 64, 1597-1603(2017).

    [48] Zhu D Z, Fang Y, Chen Y H et al. Comparison of multi-mode parallel detection microscopy methods[J]. Optics Communications, 387, 275-280(2017).

    [49] Lu R W, Wang B Q, Zhang Q X et al. Super-resolution scanning laser microscopy through virtually structured detection[J]. Biomedical Optics Express, 4, 1673-1682(2013). http://dx.doi.org/10.1364/boe.4.001673

    [50] Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. Journal of the Optical Society of America A, 26, 413-424(2009).

    [51] Zhi Y N, Lu R W, Wang B Q et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J]. Optics Letters, 40, 1683-1686(2015).

    [52] Kuang C F, Ma Y, Zhou R J et al. Virtualk-space modulation optical microscopy[J]. Physical Review Letters, 117, 028102(2016).

    [53] Hao X, Liu X, Kuang C F et al. Far-field super-resolution imaging using near-field illumination by micro-fiber[J]. Applied Physics Letters, 102, 013104(2013).

    [54] Hao X, Kuang C F, Li Y H et al. Evanescent-wave-induced frequency shift for optical superresolution imaging[J]. Optics Letters, 38, 2455-2458(2013).

    [55] Pang C L, Liu X W, Zhuge M et al. High-contrast wide-field evanescent wave illuminated subdiffraction imaging[J]. Optics Letters, 42, 4569-4572(2017). http://www.ncbi.nlm.nih.gov/pubmed/29088215

    [56] Liu X W, Kuang C F, Hao X et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Physical Review Letters, 118, 076101(2017). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111844878.html

    [57] Pang C L, Li J X, Tang M W et al. Super-resolution microscopy: on-chip super-resolution imaging with fluorescent polymer films[J]. Advanced Functional Materials, 29, 1970188(2019).

    [58] Wang Q, Bu J, Tan P S et al. Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution[J]. Plasmonics, 7, 427-433(2012). http://link.springer.com/article/10.1007/s11468-011-9324-2

    [59] Wei F F, Lu D, Shen H et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy[J]. Nano Letters, 14, 4634-4639(2014).

    [60] Cao S, Wang T S, Xu W B et al. Gradient permittivity meta-structure model for wide-field super-resolution imaging with a sub-45 nm resolution[J]. Scientific Reports, 6, 1-7(2016). http://www.ncbi.nlm.nih.gov/pubmed/26996323

    [61] Cao S, Wang T S, Yang J Z et al. Numerical analysis of wide-field optical imaging with a sub-20 nm resolution based on a meta-sandwich structure[J]. Scientific Reports, 7, 1-8(2017).

    [62] Zeng X D, Al-Amri M, Zubairy M S. Nanometer-scale microscopy via graphene plasmons[J]. Physical Review B, 90, 235418(2014).

    [63] Cao S, Wang T S, Sun Q et al. Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution[J]. Optics Express, 25, 14494-14503(2017).

    [64] Ponsetto J L, Bezryadina A, Wei F F et al. Experimental demonstration of localized plasmonic structured illumination microscopy[J]. ACS Nano, 11, 5344-5350(2017). http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01158

    [65] Bezryadina A, Zhao J X, Xia Y et al. High spatiotemporal resolution imaging with localized plasmonic structured illumination microscopy[J]. ACS Nano, 12, 8248-8254(2018).

    [66] Bezryadina A, Zhao J X, Xia Y et al. Localized plasmonic structured illumination microscopy with gaps in spatial frequencies[J]. Optics Letters, 44, 2915-2918(2019). http://www.researchgate.net/publication/333517854_Localized_plasmonic_structured_illumination_microscopy_with_gaps_in_spatial_frequencies

    [67] Liu Q L, Fang Y, Zhou R J et al. Surface wave illumination Fourier ptychographic microscopy[J]. Optics Letters, 41, 5373-5376(2016).

    [68] Guo Y, Li D, Zhang S et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018). http://www.ncbi.nlm.nih.gov/pubmed/30454650

    [69] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [70] Helle Ø I, Dullo F T, Lahrberg M et al. Structured illumination microscopy using a photonic chip[J]. Nature Photonics, 14, 431-438(2020).

    [71] Chen Y, Liu W, Zhang Z et al. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy[J]. Nature Communications, 9, 4818(2018). http://www.ncbi.nlm.nih.gov/pubmed/30446673

    [72] Liu W J, Liu Q L, Zhang Z M et al. Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy[J]. Optics Express, 27, 7237-7248(2019). http://www.researchgate.net/publication/331389878_three-dimensional_super-resolution_imaging_of_live_whole_cells_using_galvanometer-based_structured_illumination_microscopy

    [73] Roth J, Mehl J, Rohrbach A. Fast TIRF-SIM imaging of dynamic, low-fluorescent biological samples[J]. Biomedical Optics Express, 11, 4008-4026(2020). http://www.researchgate.net/publication/338681480_Fast_TIRF-SIM_imaging_of_dynamic_low-fluorescent_biological_samples

    [74] Jin L H, Liu B, Zhao F Q et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed[J]. Nature Communications, 11, 1-7(2020). http://www.nature.com/articles/s41467-020-15784-x?proof=t

    [75] Cao R Z, Chen Y H, Liu W J et al. Inverse matrix based phase estimation algorithm for structured illumination microscopy[J]. Biomedical Optics Express, 9, 5037-5051(2018). http://www.ncbi.nlm.nih.gov/pubmed/30319920

    [76] Markwirth A, Lachetta M, Mönkemöller V et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 10, 1-11(2019). http://www.nature.com/articles/s41467-019-12165-x

    [77] Zwettler F U, Spindler M C, Reinhard S et al. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy[J]. Nature Communications, 11, 1-11(2020). http://www.nature.com/articles/s41467-020-17017-7

    [78] Žurauskas M, Dobbie I M, Parton R M et al. IsoSense: frequency enhanced sensorless adaptive optics through structured illumination[J]. Optica, 6, 370-379(2019). http://www.researchgate.net/publication/331789787_IsoSense_frequency_enhanced_sensorless_adaptive_optics_through_structured_illumination

    [79] Modi S, López-Doménech G, Halff E F et al. Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery[J]. Nature Communications, 10, 1-15(2019). http://www.nature.com/articles/s41467-019-12382-4

    [80] Kounatidis I, Stanifer M L, Phillips M A et al. 3D correlative cryo-structured illumination fluorescence and soft X-ray microscopy elucidates reovirus intracellular release pathway[J]. Cell, 182, 1-16(2020). http://www.researchgate.net/publication/342563275_3D_Correlative_Cryo-Structured_Illumination_Fluorescence_and_Soft_X-ray_Microscopy_Elucidates_Reovirus_Intracellular_Release_Pathway

    [81] Hoffman D P, Shtengel G, Xu C S et al. 367(6475):eeaz5357[J]. block-face electron microscopy of whole vitreously frozen cells. Science(2020).

    [82] Liu X W, Meng C, Xu X C, tunable spatial-frequency-shift effect[EB/OL] et al. -06-27)[2020-08-24], org/abs/1906, 11647(2019). https://arxiv.

    [83] Xu X C, Liu X W, Pang C L et al. Si3N4 waveguide platform for label-free super-resolution imaging: simulation and analysis[J]. Journal of Physics D: Applied Physics, 52, 284002(2019). http://www.researchgate.net/publication/332647378_Si3N4_waveguide_platform_for_label-free_super-resolution_imaging_simulation_and_analysis

    Xiang Hao, Qing Yang, Cuifang Kuang, Xu Liu. Optical Super-Resolution Imaging Based on Frequency Shift[J]. Acta Optica Sinica, 2021, 41(1): 0111001
    Download Citation