• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 1, 44 (2024)
Jing-Hua SUN1, Wen-Juan WANG2、*, Yi-Cheng ZHU2、3, Zi-Lu GUO2、3, Yu-Fei QI2、3、5, and Wei-Ming XU4
Author Affiliations
  • 1School of Materials and Chemistry,the University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3University of Chinese Academy of Sciences,Beijing 100049,China
  • 4Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 5Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.01.007 Cite this Article
    Jing-Hua SUN, Wen-Juan WANG, Yi-Cheng ZHU, Zi-Lu GUO, Yu-Fei QI, Wei-Ming XU. Effects of Gamma irradiation on performance of InGaAsP/InP single-photon avalanche diodes[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 44 Copy Citation Text show less
    References

    [1] X Huang, X Li, M Shi et al. Effect of proton irradiation on extended wavelength In0.83Ga0.17As infrared detector. Infrared Physics & Technology, 71, 514-517(2015).

    [2] Q L Kleipool, R T Jongma, A M S Gloudemans et al. In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors. Infrared Physics & Technology, 50, 30-37(2007).

    [3] H Chen, M Jiang, S Sun et al. Room temperature continuous frequency tuning InGaAs/InP single-photon detector. AIP Advances, 8(2018).

    [4] M Zhou, W Wang, H Qu et al. InGaAsP/InP single photon avalanche diodes with ultra-high photon detection efficiency. Optical and Quantum Electronics, 52(2020).

    [5] E G Stassinopoulos, J P Raymond. The space radiation environment for electronics. Proceedings of the IEEE, 76, 1423-1442(1988).

    [6] S Bourdarie, M Xapsos. The Near-Earth Space Radiation Environment. IEEE Transactions on Nuclear Science, 55, 1810-1832(2008).

    [7] M Benfante, J L Reverchon, O Gilard et al. Electric Field Enhanced Generation Current in Proton Irradiated InGaAs Photodiodes. IEEE Transactions on Nuclear Science(2023).

    [8] G T Nelson, G Ouin, S J Polly et al. In Situ Deep-Level Transient Spectroscopy and Dark Current Measurements of Proton-Irradiated InGaAs Photodiodes. IEEE Transactions on Nuclear Science, 67, 2051-2061(2020).

    [9] O Gilard, L S How, A Delbergue et al. Damage Factor for Radiation-Induced Dark Current in InGaAs Photodiodes. IEEE Transactions on Nuclear Science, 65, 884-895(2018).

    [10] L Olantera, F Bottom, A Kraxner et al. Radiation Effects on High-Speed InGaAs Photodiodes. IEEE Transactions on Nuclear Science, 66, 1663-1670(2019).

    [11] R D Harris, W H Farr, H N Becker. Degradation of InP-based Geiger-mode avalanche photodiodes due to proton irradiation. Journal of Modern Optics, 58, 225-232(2011).

    [12] H N Becker, A H Johnston. Dark current degradation of near infrared avalanche photodiodes from proton irradiation. IEEE Transactions on Nuclear Science, 51, 3572-3578(2004).

    [13] Hang Zhang, Dongbin Liu, Shuai Li et al. Analysis of Total Dose Irradiation Test for InGaAs Detector. Journal of Transduction Technology, 28, 19-22(2015).

    [14] J R Srour, C J Marshall, P W Marshall. Review of displacement damage effects in silicon devices. IEEE Transactions on Nuclear Science, 50, 653-670(2003).

    Jing-Hua SUN, Wen-Juan WANG, Yi-Cheng ZHU, Zi-Lu GUO, Yu-Fei QI, Wei-Ming XU. Effects of Gamma irradiation on performance of InGaAsP/InP single-photon avalanche diodes[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 44
    Download Citation