• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210447 (2021)
Li Zhang, Xinzhou Liang, Qian Lin, and Bingye Cai
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
  • show less
    DOI: 10.3788/IRLA20210447 Cite this Article
    Li Zhang, Xinzhou Liang, Qian Lin, Bingye Cai. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210447 Copy Citation Text show less
    References

    [1] E Snitzer. Cylindrical dielectric waveguide modes. Journal of the Optical Society of America A, 51, 491-498(1961).

    [2] Y Mushiake, K Matsumura, N Nakajima. Generation of radially polarized optical beam mode by laser oscillation. Proceedings of the IEEE, 60, 1107-1109(1972).

    [3] D Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Applied Physics Letters, 20, 266-267(1972).

    [4] E G Churin, J Hobfeld, T. Tschudi. Polarization configuration with singular point formed by computer generated holograms. Optics Communications, 99, 13-17(1993).

    [5] S C Tidwell, G H Kim, W D Kimura. Efficient radially polarized laser beam generation with a double interferometer. Applied Optics, 32, 5222-5229(1993).

    [6] M Stalder, M Schadt. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 21, 1948-1950(1996).

    [7] K S Youngworth, T G Brown. Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7, 77-87(2000).

    [8] R Dorn, S Quabis, G Leuchs. Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901(2003).

    [9] Q Zhan, J Leger. Focus shaping using cylindrical vector beams. Optics Express, 10, 324-331(2002).

    [10] Y Kozawa, S Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Optics Express, 18, 10828-10833(2010).

    [11] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Applied Physics A, 86, 329-334(2007).

    [12] Q Zhan. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [13] Z Liu, Y Liu, Y Ke, et al. Geometric phase Doppler effect: when struct light meets rotating structured materials. Optics Express, 25, 111564-11573(2017).

    [14] H Wang, L Shi, G Yuan, et al. Subwavelength and super-resolution nondiffraction beam. Applied Physics Letters, 89, 171102(2006).

    [15] X Zhang, T Xia, S Cheng, et al. Free-space information transfer using the elliptic vortex beam with fractional topological charge. Optics Communications, 431, 238-244(2019).

    [16] J Vieira, J T Mendoca. Nonlinear laser drivendonutwakefields for positron and electron acceleration. Physical Review Letters, 112, 215001(2014).

    [17] X Wang, Y Li, J Chen, et al. A new type of vector fields with hybrid states of polarization. Optics Express, 18, 10786-10795(2010).

    [18] A M Beckley, T G Brown, M A Alonso. Full Poincaré beams. Optics Express, 18, 10777-10785(2010).

    [19] X Yi, Y Liu, X Ling, et al. Hybrid-order Poincare sphere. Physical Review A, 91, 023801(2015).

    [20] G Arora, R Rajput, P Senthilkumaran. Full Poincaré beam with all the Stokes vortices. Optics Letters, 44, 5638-5641(2019).

    [21] A G Ruchi, P Senthilkumaran. Hybrid order Poincaré spheres for Stokes singularities. Optics Letters, 45, 5136-5139(2020).

    [22] Y Liu, Z Liu, J Zhou, et al. Measurements of Pancharatnam–Berry phase in mode transformations on hybrid-order Poincaré sphere. Optics Letters, 42, 3447-3450(2017).

    [23] H Wang, G Rui, Q Zhan. Dynamic propagation of optical vortices embedded in full Poincaré beams with rotationally polarization symmetry. Optics Communications, 351, 15-25(2015).

    [24] G M Lerman, L Stern, U Levy. Generation and tight focusing of hybridly polarized vector beams. Optics Express, 18, 27650-27657(2010).

    [25] L Zhang, F Lin, X Qiu, et al. Full vectorial feature of second-harmonic generation with full Poincaré beams. Chinese Optics Letters, 17, 091901(2019).

    [26] L Zhang, X Qiu, F Li, et al. Second harmonic generation with full Poincaré beams. Optics Express, 26, 11678-11684(2018).

    [27] L Zhang, X Qiu, L Zeng, et al. Multiple trapping using a focused hybrid vector beam. Chinese Physics B, 28, 094202(2019).

    [28] C Wei, D Wu, C Liang, et al. Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam. Optics Express, 23, 24331-24341(2015).

    [29] F Cardano, E Karimi, L Marrucci, et al. Generation and dynamics of optical beams with polarization singularities. Optics Express, 21, 8815-8820(2013).

    [30] V Shvedov, P Karpinski, Y Sheng, et al. Visualizing polarization singularities in Bessel Poincaré beams. Optics Express, 23, 12444-12453(2015).

    [31] H Garcia-Gracia, J C Gutiérrez-Vega. Polarization singularities in nondiffracting Mathieu-Poincaré beams. Journal of Optics, 18, 014006(2016).

    [32] G F Nye. Polarization effects in the diffraction of electromagnetic waves: the role of disclinations. Proceedings of the Royal Society of London Series A, 387, 105-132(1983).

    [33] M R Dennis. Polarization singularities in paraxial vector fields: morphology and statistics. Optics Communications, 213, 201-221(2002).

    [34] D Lopez-Mago. On the overall polarisation properties of Poincaré beams. Journal of Optics, 21, 115605(2019).

    [35] S Fu, Y Zhai, T Wang, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram. Applied Physics Letters, 111, 211101(2017).

    [36] L Han, S Qi, S Liu, et al. Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient. Chinese Physics B, 29, 094203(2020).

    [37] E Galvez, S Khadka, W H Schubert, et al. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light. Applied Optics, 51, 2925-2934(2012).

    [38] T Lu, T Huang, J Wang, et al. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator. Scientific Reports, 6, 39657(2016).

    [39] Y Wang, L Wang, Y Xin. Generation of full Poincaré beams on arbitrary order Poincaré sphere. Current Optics and Photonics, 1, 631-636(2017).

    [40] X Ling, X Yi, Z Dai, et al. Characterization and manipulation of full Poincaré beams on the hybrid Poincaré sphere. Journal of the Optical Society of America B, 33, 2172-2176(2016).

    [41] D Li, S Feng, S Nie, et al. Generation of arbitrary perfect Poincaré beams. Journal of Applied Physics, 125, 073105(2019).

    [42] Z Gu, D Yin, F Gu, et al. Generation of concentric perfect Poincaré beams. Scientific Reports, 9, 15301(2019).

    [43] A M Beckley, T G Brown, M A Alonso. Full Poincaré beams II: partial polarization. Optics Express, 20, 9357-9362(2012).

    [44] L Marrucci, C Manzo, D Paparo. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Applied Physics Letters, 88, 221102(2006).

    [45] Z X Liu, Y Y Liu, Y G Ke, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photonics Research, 5, 15-21(2017).

    [46] S Lou, Y Zhou, Y Yuan, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. Optics Express, 27, 8596-8604(2019).

    [47] Y Zhang, P Chen, S Ge, et al. Spin-controlled massive channels of hybrid-order Poincare sphere beams. Applied Physics Letters, 117, 081101(2020).

    [48] B Khajavi, E J Galvez. Preparation of Poincaré beams with a same-path polarization/spatial-mode interferometer. Optical Engineering, 54, 111305(2015).

    [49] C Alpmann, C Schlickriede, E Otte, et al. Dynamic modulation of Poincaré beams. Scientific Reports, 7, 8076(2017).

    [50] E Otte, C Alpmann, C Denz. Polarization singularity explosions in tailored light fields. Laser Photonics Reviews, 12, 1700200(2018).

    [51] G M Lerman, U Levy. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Optics Letters, 33, 2782-2784(2008).

    [52] R Wang, S He, S Chen, et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere. Optics Letters, 43, 3570-3573(2018).

    [53] W B Lin, Y Ota, Y Arakawa, et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Physical Review Research, 3, 023055(2021).

    [54] M Z Liu, P C Huo, W Q Zhu, et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nature Communications, 12, 2230(2021).

    [55] H Wang, L Shi, B Lukyanchuk, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics, 2, 501-505(2008).

    [56] X Zang, G Bautista, L Turquet, et al. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams. Journal of the Optical Society of America B, 38, 521-529(2021).

    [57] W Zhu, V Shvedov, W She, et al. Transverse spin angular momentum of tightly focused full Poincaré beams. Optics Express, 23, 34029-34041(2015).

    [58] Z Man, X Dou, H P Urbach. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams. Optics Communications, 458, 124790(2002).

    [59] Z Man, Z Bai, J Li, et al. Focus shaping by tailoring arbitrary hybrid polarization states that have a combination of orthogonal linear polarization bases. Applied Optics, 57, 3047-3055(2018).

    [60] W Han, W Cheng, Q W Zhan. Flattop focusing with full Poincaré beams under low numerical aperture illumination. Optics Letters, 36, 1605-1607(2011).

    [61] X Dai, Y Li, L Liu. Tight focusing properties of hybrid-order Poincaré sphere beams. Optics Communications, 426, 46-53(2018).

    [62] L G Wang. Optical forces on submicron particles induced by full Poincaré beams. Optics Express, 20, 20814-20826(2012).

    [63] Y Xue, Y Wang, S Zhou, et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam. Journal of the Optical Society of America A, 35, 953-958(2018).

    [64] M M Sanchez, J A Davis, I Moreno, et al. Gouy phase effects on propagation of pure and hybrid vector beams. Optics Express, 27, 2374-2386(2019).

    [65] X Lu, Z Wu, W Zhang, et al. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect. Scientific Reports, 4, 4865(2014).

    [66] C Yang, Z Zhou, Y Li, et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Optics Letters, 44, 219-222(2019).

    [67] H Wu, Z Zhou, W Gao, et al. Dynamic tomography of the spin-orbit coupling in nonlinear optics. Physical Review A, 99, 023830(2019).

    [68] H Wu, B Zhao, Rosles-Guzmán, et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light. Physical Review Applied, 13, 064041(2020).

    [69] N R Silva, A G Oliveira, M F Z Arruda, et al. Stimulated parametric down-conversion with vector vortex beams. Physical Review Applied, 15, 024039(2021).

    [70] B Wen, G Rui, J He, et al. Polarization rotation and singularity evolution of fundamental Poincaré beams through anisotropic Kerr nonlinearities. Journal of Optics, 22, 08550(2020).

    [71] X Yang, Y Chen, J Wang, et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor. Optics Letters, 44, 2911-2914(2019).

    [72] D Luo, H Hu, C Pan, et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams. Journal of Optics, 22, 115612(2020).

    CLP Journals

    [1] Baojun Yu, Zhuoyi Guo, Faxiang Lu, Yan Gu, Jieqiong Lin. Ultraviolet photocatalytic-vibrated composite polishing[J]. Infrared and Laser Engineering, 2022, 51(11): 20220138

    [2] Wenyue Wang, Jinsong Li, Jixiang Guo, Jiaqi Lv. Research progress of vector optical beam with longitudinally varying polarization (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230362

    Li Zhang, Xinzhou Liang, Qian Lin, Bingye Cai. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210447
    Download Citation