• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210447 (2021)
Li Zhang, Xinzhou Liang, Qian Lin, and Bingye Cai
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
  • show less
    DOI: 10.3788/IRLA20210447 Cite this Article
    Li Zhang, Xinzhou Liang, Qian Lin, Bingye Cai. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210447 Copy Citation Text show less
    Distribution of polarization for hybrid vector light with =0,π/4, π/2, 3π/4 [17]=0,π/4, π/2, 3π/4时,杂化矢量光的偏振分布[17]
    Fig. 1. Distribution of polarization for hybrid vector light with =0,π/4, π/2, 3π/4 [17]=0,π/4, π/2, 3π/4时,杂化矢量光的偏振分布[17]
    Distribution of polarization for FP beams where and are, respectively, (a) , ; (b) , ; (c) , [18](a) 和、(b) 和、(c) 和时,FP光束的偏振分布[18]
    Fig. 2. Distribution of polarization for FP beams where and are, respectively, (a) , ; (b) , ; (c) , [18](a) 和 、(b) 和 、(c) 和 时,FP光束的偏振分布[18]
    C-point and L-line in star (IC=1/2), lemon (IC=−1/2), spiral fields (IC=1)[29]
    Fig. 3. C-point and L-line in star (IC=1/2), lemon (IC=−1/2), spiral fields (IC=1)[29]
    Common-path interferometer setup implemented with a transmission SLM to generate hybridly polarized vector fields[17]
    Fig. 4. Common-path interferometer setup implemented with a transmission SLM to generate hybridly polarized vector fields[17]
    Common-path interferometer setup implemented with a reflective SLM to generate hybrid Poincaré beams[35]
    Fig. 5. Common-path interferometer setup implemented with a reflective SLM to generate hybrid Poincaré beams[35]
    Mach-Zehnder interferometer setup to generate hybrid Poincaré beams[37]
    Fig. 6. Mach-Zehnder interferometer setup to generate hybrid Poincaré beams[37]
    Sagnac interferometer setup to generate hybrid Poincaré beams[40]
    Fig. 7. Sagnac interferometer setup to generate hybrid Poincaré beams[40]
    Experimental setup with q-plate to generate optical beams with polarization singularities[29]
    Fig. 8. Experimental setup with q-plate to generate optical beams with polarization singularities[29]
    Experimental setup with Q-plate and SPP to generate FP beams[45]
    Fig. 9. Experimental setup with Q-plate and SPP to generate FP beams[45]
    Experimental setup with all dielectric metasurface platform to generate perfect Poincaré beams[54]
    Fig. 10. Experimental setup with all dielectric metasurface platform to generate perfect Poincaré beams[54]
    (a) Energy density at the focal plane; (b)-(e) Polarization ellipses at the focal plane[24]
    Fig. 11. (a) Energy density at the focal plane; (b)-(e) Polarization ellipses at the focal plane[24]
    Normalized intensity distribution in x–y plane at the focal point[27]
    Fig. 12. Normalized intensity distribution in xy plane at the focal point[27]
    Streamlines around C points and L lines distribution: (a) Fundamental FP beam; (b) and (c) numerical and experimental results of the second harmonic beam[25]
    Fig. 13. Streamlines around C points and L lines distribution: (a) Fundamental FP beam; (b) and (c) numerical and experimental results of the second harmonic beam[25]
    Li Zhang, Xinzhou Liang, Qian Lin, Bingye Cai. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210447
    Download Citation