• Acta Optica Sinica
  • Vol. 41, Issue 1, 0114004 (2021)
Yi Zhang1、2, Cheng'ao Yang1、2, Jinming Shang1、2, Yihang Chen1、2, Tianfang Wang1、2, Yu Zhang1、2、*, Yingqiang Xu1、2, Bing Liu3、**, and Zhichuan Niu1、2、3、***
Author Affiliations
  • 1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.3788/AOS202141.0114004 Cite this Article Set citation alerts
    Yi Zhang, Cheng'ao Yang, Jinming Shang, Yihang Chen, Tianfang Wang, Yu Zhang, Yingqiang Xu, Bing Liu, Zhichuan Niu. Research Progress of Semiconductor Interband Cascade Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114004 Copy Citation Text show less
    References

    [1] Christensen L E, Mansour K, Yang R Q. Thermoelectrically cooled interband cascade laser for field measurements[J]. Optical Engineering, 49, 111119(2010).

    [2] Christensen L E, Webster C R, Yang R Q. Aircraft and balloon in situ measurements of methane and hydrochloric acid using interband cascade lasers[J]. Applied Optics, 46, 1132-1138(2007). http://www.ncbi.nlm.nih.gov/pubmed/17304312

    [3] Wysocki G, Bakhirkin Y, So S et al. Dual interband cascade laser based trace-gas sensor for environmental monitoring[J]. Applied Optics, 46, 8202-8210(2007).

    [4] Parameswaran K R, Rosen D I, Allen M G et al. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements[J]. Applied Optics, 48, B73-B79(2009).

    [5] Bauer A, Rößner K, Lehnhardt T et al. Mid-infrared semiconductor heterostructure lasers for gas sensing applications[J]. Semiconductor Science and Technology, 26, 014032(2010).

    [6] Horstjann M, Bakhirkin Y A, Kosterev A A et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics B, 79, 799-803(2004). http://link.springer.com/article/10.1007/s00340-004-1659-3

    [7] Dong L, Yu Y, Li C et al. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell[J]. Optics Express, 23, 19821-19830(2015).

    [8] Joullie A, Christol P, Baranov A N et al. Mid-infrared 2-5 μm heterojunction laser diodes[M]. Solid-State Mid-Infrared Laser Source, Heidelberg: Springer, 89, 1-61(2003).

    [9] Soibel A, Wright M W, Farr W H et al. Midinfrared interband cascade laser for free space optical communication[J]. IEEE Photonics Technology Letters, 22, 121-123(2010).

    [10] Garbuzov D Z, Martinelli R U, Lee H et al. Ultralow-loss broadened-waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers[J]. Applied Physics Letters, 69, 2006-2008(1996). http://www.onacademic.com/detail/journal_1000035858296910_8112.html

    [11] Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm[J]. Applied Physics Letters, 72, 876-878(1998).

    [12] Mermelstein C, Simanowski S, Mayer M et al. Room-temperature low-threshold low-loss continuous-wave operation of 2.26 μm GaInAsSb/AlGaAsSb quantum-well laser diodes[J]. Applied Physics Letters, 77, 1581-1583(2000).

    [13] Zhang YG, Li AZ, Zheng YL, et al., 2001, 227/228: 582- 585.

    [14] Rattunde M, Mermelstein C, Schmitz J et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 80, 4085-4087(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4866000

    [15] Kim J G, Shterengas L, Martinelli R U et al. Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves[J]. Applied Physics Letters, 81, 3146-3148(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4867265

    [16] Budni P A, Ibach C R, Setzler S D et al. 50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser[J]. Optics Letters, 28, 1016-1018(2003).

    [17] Zhang Y G, Zheng Y L, Lin C et al[J]. Continuous Wave Performance and Tunability of MBE Grown 2.1 μm InGaAsSb/AlGaAsSb MQW lasers Chinese Physics Letters, 2006, 2262-2265.

    [18] Rattunde M, Schmitz J, Kaufel G et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 88, 081115(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4821505

    [19] Chen J F, Kipshidze G, Shterengas L. High-power 2 diode lasers with asymmetric waveguide[J]. IEEE Journal of Quantum Electronics, 46, 1464-1469(2010).

    [20] Garbuzov D Z, Martinelli R U, Lee H et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 70, 2931-2933(1997). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4891177

    [21] Donetsky D, Kipshidze G, Shterengas L et al. 2.3 μm type-I quantum well GalnAsSb/AlGaAsSb/GaSb laser diodes with quasi-CW output power of 1.4 W[J]. Electronics Letters, 43, 810-811(2007). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4278449

    [22] Shterengas L, Belenky G, Kisin M V et al. High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%[J]. Applied Physics Letters, 90, 011119(2007).

    [23] Xie S W, Yang C G, Huang S S et al. 2.1 μm InGaSb quantum well lasers exhibiting the maximum conversion efficiency of 27.5% with digitally grown AlGaAsSb barriers and gradient layers[J]. Superlattices and Microstructures, 130, 339-345(2019).

    [24] Kim J G, Shterengas L, Martinelli R U et al. High-power room-temperature continuous wave operation of type-I In(Al)GaAsSb/GaSb diode lasers at wavelengths greater than 2.5 μm[C]∥Novel In-Plane Semiconductor Lasers III. Sarnoff Corporation, CN530, NJ, 08543-5300, 2004.

    [25] Grau M, Lin C, Dier O et al. Room-temperature operation of 3.26 μm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers[J]. Applied Physics Letters, 87, 241104(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4817818

    [26] Hosoda T, Belenky G, Shterengas L et al. Continuous-wave room temperature operated 3.0 μm type I GaSb-based lasers with quinternary AlInGaAsSb barriers[J]. Applied Physics Letters, 92, 091106(2008). http://scitation.aip.org/content/aip/journal/apl/92/9/10.1063/1.2890053

    [27] Shterengas L, Belenky G, Kipshidze G et al. Room temperature operated 3.1-μm type-I GaSb-based diode lasers with 80 mW continuous wave output power[J]. Applied Physics Letters, 92, 171111(2008).

    [28] Hosoda T, Kipshidze G, Shterengas L et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: role of waveguide width[J]. Applied Physics Letters, 94, 261104(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5155921

    [29] Belenky G, Shterengas L, Wang D et al. Continuous wave operated 3.2 μm type-I quantum-well diode lasers with the quinary waveguide layer[J]. Semiconductor Science and Technology, 24, 115013(2009).

    [30] Hosoda T, Kipshidze G, Shterengas L et al. Diode lasers emitting near 3.44 μm in continuous-wave regime at 300 K[J]. Electronics Letters, 46, 1455-1457(2010). http://ieeexplore.ieee.org/document/5604807

    [31] Hosoda T, Kipshidze G, Tsvid G et al. Type-I GaSb-based laser diodes operating in 3.1- to 3.3-μm wavelength range[J]. IEEE Photonics Technology Letters, 22, 718-720(2010).

    [32] Belenky G, Shterengas L, Kipshidze G et al. Type-I diode lasers for spectral region above 3 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1426-1434(2011).

    [33] Hosoda T, Feng T, Shterengas L et al. High power cascade diode lasers emitting near 2 μm[J]. Applied Physics Letters, 108, 131109(2016).

    [34] Shterengas L, Lang R, Kipshidze G et al. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm[J]. Applied Physics Letters, 105, 161112(2014).

    [35] Shterengas L, Liang R, Kipshidze G et al. Type-I quantum well cascade diode lasers emitting near 3 μm[J]. Applied Physics Letters, 103, 121108(2013). http://dx.doi.org/10.1063/1.4821992

    [36] Hosoda T, Wang M, Shterengas L et al. Three stage cascade diode lasers generating 500 mW near 3.2 μm[J]. Applied Physics Letters, 107, 111106(2015).

    [37] Belyanin A A, Smowton P M, Shterengas L et al. Type-I QW cascade diode lasers with 830 mW of CW power at 3 μm[J]. Proceedings of SPIE, 9382, 93820X(2015).

    [38] Shterengas L, Kipshidze G, Hosoda T et al. Cascade type-I quantum well GaSb-based diode lasers[J]. Photonics, 3, 27(2016). http://www.researchgate.net/publication/302980751_Cascade_Type-I_Quantum_Well_GaSb-Based_Diode_Lasers

    [39] Shterengas L, Kipshidze G, Hosoda T et al. Cascade pumping of 1.9-3.3 μm type-I quantum well GaSb-based diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-8(2017). http://ieeexplore.ieee.org/document/7886268/

    [40] Feng T, Hosoda T, Shterengas L et al. Two-step narrow ridge cascade diode lasers emitting near 2 μm[J]. IEEE Photonics Technology Letters, 29, 485-488(2017).

    [41] Ermolaev M, Lin Y X, Shterengas L et al. GaSb-based type-I quantum well 3-3.5 μm cascade light emitting diodes[J]. IEEE Photonics Technology Letters, 30, 869-872(2018). http://ieeexplore.ieee.org/document/8329492/

    [42] Hofstetter D, Beck M, Aellen T et al. Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler[J]. Applied Physics Letters, 78, 1964-1966(2001).

    [43] Tahraoui A, Matlis A, Slivken S et al. High-performance quantum cascade lasers (λ~11 μm) operating at high temperature (T≥425 K)[J]. Applied Physics Letters, 78, 416-418(2001). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4905892

    [44] Yu J S, Slivken S, Evans A et al. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature[J]. Applied Physics Letters, 83, 2503-2505(2003). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4870414

    [45] Maulini R, Giovannini M et al. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade[J]. Applied Physics Letters, 88, 201113(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4820125

    [46] Evans A, Nguyen J, Slivken S et al. Quantum-cascade lasers operating in continuous-wave mode above 90 ℃ at λ~5.25 μm[J]. Applied Physics Letters, 88, 051105(2006).

    [47] Darvish S R, Zhang W, Evans A et al. High-power, continuous-wave operation of distributed-feedback quantum-cascade lasers at λ~7.8 μm[J]. Applied Physics Letters, 89, 251119(2006).

    [48] Lyakh A, Pflugl C, Diehl L et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm[J]. Applied Physics Letters, 92, 111110(2008).

    [49] Bai Y, Slivken S, Darvish S R et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 93, 021103(2008).

    [50] Bai Y, Darvish S R, Slivken S et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 92, 101105(2008). http://scitation.aip.org/content/aip/journal/apl/92/10/10.1063/1.2894569

    [51] Lyakh A, Maulini R, Tsekoun A et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 95, 141113(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5287429

    [52] Zhang J C, Wang L J, Zhang W et al. Holographic fabricated continuous wave operation of distributed feedback quantum cascade lasers at λ≈8.5 μm[J]. Journal of Semiconductors, 32, 044008(2011).

    [53] Bai Y, Bandyopadhyay N, Tsao S et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 98, 181102(2011).

    [54] Zhang J C, Liu F Q, Tan S et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 100, 112105(2012).

    [55] Lyakh A, Suttinger M, Go R et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 109, 121109(2016).

    [56] Yu J S, Darvish S R, Evans A et al. Room-temperature continuous-wave operation of quantum-cascade lasers at λ~4 μm[J]. Applied Physics Letters, 88, 041111(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4821031

    [57] Bandyopadhyay N, Bai Y, Gokden B et al. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 μm[J]. Applied Physics Letters, 97, 131117(2010).

    [58] Bandyopadhyay N, Slivken S, Bai Y et al. High power, continuous wave, room temperature operation of λ~3.4 μm and λ~3.55 μm InP-based quantum cascade lasers[J]. Applied Physics Letters, 100, 212104(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6207261

    [59] Bandyopadhyay N, Bai Y, Tsao S et al. Room temperature continuous wave operation of λ~3-3.2 μm quantum cascade lasers[J]. Applied Physics Letters, 101, 241110(2012). http://scitation.aip.org/content/aip/journal/apl/101/24/10.1063/1.4769038

    [60] Motyka M, Ryczko K, Dyksik M et al. On the modified active region design of interband cascade lasers[J]. Journal of Applied Physics, 117, 084312(2015). http://scitation.aip.org/content/aip/journal/jap/117/8/10.1063/1.4913391

    [61] Zhang Y, Shao F H, Yang C A et al. Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm[J]. Chinese Physics B, 27, 124207(2018).

    [62] Yang R Q . Infrared laser based on intersubband transitions in quantum wells[J]. Superlattices and Microstructures, 17, 77-77(1995). http://www.sciencedirect.com/science/article/pii/S0749603685710178

    [63] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [64] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors[J]. IBM Journal of Research and Development, 14, 61-65(1970).

    [65] Kazarinov R F, Suris R A. Electric and electromagnetic properties of semiconductors with a superlattice[J]. Sovit Physics-Semiconductors, 6, 120-131(1972). http://adsabs.harvard.edu/abs/1976PSSBR..73..327I

    [66] Meyer J R, Vurgaftman I, Yang R Q et al. Type-II and type-I interband cascade lasers[J]. Electronics Letters, 32, 45-46(1996).

    [67] Vurgaftman I, Bewley W W, Felix C L et al. MID-IR vertical cavity surface-emitting lasers[J]. MRS Proceedings, 484, 95(1997).

    [68] Lin C H, Yang R Q, Zhang D et al. Type-II interband quantum cascade laser at 3.8 μm[J]. Electronics Letters, 33, 598-599(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=591386

    [69] Yang R Q, Yang B H, Zhang D et al. High power mid-infrared interband cascade lasers based on type-II quantum wells[J]. Applied Physics Letters, 71, 2409-2411(1997). http://scitation.aip.org/content/aip/journal/apl/71/17/10.1063/1.120076

    [70] Yang B H, Zhang D, Yang R Q et al. Mid-infrared interband cascade lasers with quantum efficiencies >200%[J]. Applied Physics Letters, 72, 2220-2222(1998).

    [71] Felix C L, Bewley W W, Vurgaftman I et al. Interband cascade laser emitting >1 photon per injected electron[J]. IEEE Photonics Technology Letters, 9, 1433-1435(1997). http://ieeexplore.ieee.org/document/634699

    [72] Bewley W W, Aifer E H, Felix C L et al. High-temperature type-II superlattice diode laser at λ=2.9 μm[J]. Applied Physics Letters, 71, 3607-3609(1997). http://adsabs.harvard.edu/abs/1997ApPhL..71.3607B

    [73] Olafsen L J, Aifer E H, Vurgaftman I et al. Near-room-temperature mid-infrared interband cascade laser[J]. Applied Physics Letters, 72, 2370-2372(1998).

    [74] Bruno J D, Bradshaw J L, Yang R Q et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Applied Physics Letters, 76, 3167-3169(2000).

    [75] Yang R Q, Bradshaw J L, Bruno J D et al. Power, efficiency, and thermal characteristics of type-II interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 37, 282-289(2001).

    [76] Bradshaw J L, Yang R Q, Bruno J D et al. High-efficiency interband cascade lasers with peak power exceeding 4 W/facet[J]. Applied Physics Letters, 75, 2362-2364(1999). http://scitation.aip.org/content/aip/journal/apl/75/16/10.1063/1.125015

    [77] Bradshaw J L, Bruno J D, Pham J T et al. Continuous wave operation of type-II interband cascade lasers[J]. IEE Proceedings-Optoelectronics, 147, 177-180(2000). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=860911

    [78] Yang R Q, Bradshaw J L, Bruno J D et al. Mid-infrared type-II interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 38, 559-568(2002).

    [79] Yang R Q, Hill C J, Yang B H et al. Room-temperature type-II interband cascade lasers near 4.1 μm[J]. Applied Physics Letters, 83, 2109-2111(2003). http://scitation.aip.org/content/aip/journal/apl/83/11/10.1063/1.1611260

    [80] Yang R Q, Hill C J, Yang B H et al. Continuous-wave operation of distributed feedback interband cascade lasers[J]. Applied Physics Letters, 84, 3699-3701(2004).

    [81] Hill C J, Yang R Q. MBE growth optimization of Sb-based interband cascade lasers[J]. Journal of Crystal Growth, 278, 167-172(2005). http://www.sciencedirect.com/science/article/pii/S0022024804020688

    [82] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 87, 151109(2005). http://scitation.aip.org/content/aip/journal/apl/87/15/10.1063/1.2103387/cite/endnote;jsessionid=ggi3qetlaqrts.x-aip-live-06

    [83] Mansour K, Qiu Y, Hill C J et al. Mid-infrared interband cascade lasers at thermoelectric cooler temperatures[J]. Electronics Letters, 42, 1034-1035(2006). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1688166

    [84] Meyer J R, Zhang D, Bewley W W et al. Type II W, interband cascade and vertical-cavity surface-emitting mid-IR lasers[J]. IEE Proceedings-Optoelectronics, 145, 275-280(1998). http://digital-library.theiet.org/content/journals/10.1049/ip-opt_19982304

    [85] Yang M J, Moore W J, Bennett B R et al. Optimum growth parameters for type-II infrared lasers[J]. Journal of Applied Physics, 86, 1796-1799(1999). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.370971

    [86] Nosho B Z, Barvosa-Carter W, Yang M J et al. Interpreting interfacial structure in cross-sectional STM images of III-V semiconductor heterostructures[J]. Surface Science, 465, 361-371(2000). http://www.sciencedirect.com/science/article/pii/S0039602800007329

    [87] Yang M J, Moore W J, Yang C H et al. Determination of temperature dependence of GaSb absorption edge and its application for transmission thermometry[J]. Journal of Applied Physics, 85, 6632-6635(1999). http://scitation.aip.org/content/aip/journal/jap/85/9/10.1063/1.370290

    [88] Yang M J, Meyer J R, Bewley W W et al. Type-II antimonide quantum wells for mid-infrared lasers[J]. Optical Materials, 17, 179-183(2001). http://www.sciencedirect.com/science/article/pii/S092534670100043X

    [89] Canedy C L, Bewley W W, Kim C S et al. Dependence of type II “W” mid-infrared photoluminescence and lasing properties on growth conditions[J]. Journal of Applied Physics, 94, 1347-1355(2003). http://scitation.aip.org/content/aip/journal/jap/94/3/10.1063/1.1586974

    [90] Bewley W W, Canedy C L, Kim C S et al. Antimonide type-II “W” lasers: growth studies and guided-mode leakage into substrate[J]. Physica E Low-Dimensional Systems and Nanostructures, 20, 466-470(2004). http://www.sciencedirect.com/science/article/pii/S1386947703004715

    [91] Canedy C L, Bewley W W, Lindle J R et al. High-power and high-efficiency midwave-infrared interband cascade lasers[J]. Applied Physics Letters, 88, 161103(2006).

    [92] Canedy C L, Bewley W W, Lindle J R et al. Investigation of mid-infrared type-II “W” diode lasers[J]. Journal of Electronic Materials, 35, 453-461(2006). http://link.springer.com/article/10.1007/BF02690532

    [93] Kim C S, Canedy C L, Aifer E H et al. Molecular beam epitaxy growth of antimonide type-II “W” high-power interband cascade lasers and long-wavelength infrared photodiodes[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 991(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4975512

    [94] Canedy C L, Kim C S, Kim M et al. High-power, narrow-ridge, mid-infrared interband cascade lasers[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 26, 931-934(2007).

    [95] Kim M, Canedy C L, Bewley W W et al. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature[J]. Applied Physics Letters, 92, 191110(2008).

    [96] Canedy C L, Bewley W W, Lindle J R et al. Interband cascade lasers with wavelengths spanning 2.9 μm to 5.2 μm[J]. Journal of Electronic Materials, 37, 1780-1785(2008). http://link.springer.com/article/10.1007/s11664-008-0444-1

    [97] Bewley W W, Lindle J R, Kim C S et al. Lifetimes and Auger coefficients in type-II W interband cascade lasers[J]. Applied Physics Letters, 93, 041118(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4836280

    [98] Bewley W W, Canedy C L, Kim C S et al. Advances in the growth and performance of antimonide-based mid-infrared interband cascade lasers[C]∥2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), May 31-June 4, , 1-4(2010).

    [99] Canedy C L, Abell J, Bewley W W, Microelectronics: Materials et al. 28(3): C3G8-C3G12. Processing, Measurement, Phenomena(2010).

    [100] Kim M, Canedy C L, Kim C S et al. Room temperature interband cascade lasers[J]. Physics Procedia, 3, 1195-1200(2010). http://www.sciencedirect.com/science/article/pii/S187538921000163X

    [101] Ikyo B A, Marko I P, Adams A R et al. Temperature sensitivity of mid-infrared type II “W” interband cascade lasers (ICL) emitting at 4.1 μm at room temperature[J]. Conference Digest-IEEE International Semiconductor Laser Conference, 41-42(2010). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5642761

    [102] Vurgaftman I, Bewley W W, Canedy C L et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2, 585(2011). http://www.nature.com/articles/ncomms1595

    [103] Bewley W W, Kim C S, Kim M et al. A new generation of interband cascade lasers. [C]∥ 15th International Conference on Narrow Gap Systems (NGS15). AIP Conference Proceedings, Volume 1416. AIP Conference Proceedings, 1416, 46-48(2011).

    [104] Vurgaftman I, Bewley W W, Canedy C L et al. Mid-IR type-II interband cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1435-1444(2011).

    [105] Bewley W W, Canedy C L, Kim C S et al. High-power room-temperature continuous-wave mid-infrared interband cascade lasers[J]. Optics Express, 20, 20894-20901(2012).

    [106] Vurgaftman I, Bewley W W, Merritt C D et al. Physics of interband cascade lasers[J]. Proceedings of SPIE, 8268, 82681F(2012).

    [107] Kim C S, Bewley W W, Kim C S et al. High-power, high-brightness continuous-wave interband cascade lasers with tapered ridges[J]. Applied Physics Letters, 103, 111111(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6596470

    [108] Abell J, Weih R, Canedy C L et al. Interband cascade lasers with external differential quantum efficiency >50% at room temperature. [C]∥Mid-infrared Coherent Sources, MTh4B, 1(2013).

    [109] Bauer A, Dallner M, Kamp M et al. Shortened injector interband cascade lasers for 3.3- to 3.6 μm emission[J]. Optical Engineering, 49, 111117(2010).

    [110] Janiak F, Sek G, Motyka M et al. Increasing the optical transition oscillator strength in GaSb-based type II quantum wells[J]. Applied Physics Letters, 100, 231908(2012).

    [111] Janiak F, Motyka M, Sek G et al. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers[J]. Journal of Applied Physics, 114, 223510(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6708801

    [112] Ryczko K, Sęk G, Misiewicz J. Eight-band k·p modeling of InAs/InGaAsSb type-II W-design quantum well structures for interband cascade lasers emitting in a broad range of mid infrared[J]. Journal of Applied Physics, 114, 223519(2013). http://scitation.aip.org/content/aip/journal/jap/114/22/10.1063/1.4843076

    [113] Weih R, Kamp M, Höfling S. Interband cascade lasers with room temperature threshold current densities below 100 A/cm 2[J]. Applied Physics Letters, 102, 231123(2013). http://scitation.aip.org/content/aip/journal/apl/102/23/10.1063/1.4811133

    [114] Weih R, Bauer A, Kamp M et al. Interband cascade lasers with AlGaAsSb bulk cladding layers[J]. Optical Materials Express, 3, 1624-1631(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ome-3-10-1624

    [115] Canedy C L, Abell J, Merritt C D et al. Pulsed and CW performance of 7-stage interband cascade lasers[J]. Optics Express, 22, 7702-7710(2014).

    [116] Kim M, Bewley W W, Canedy C L et al. High-power continuous-wave interband cascade lasers with 10 active stages[J]. Optics Express, 23, 9664-9672(2015).

    [117] Hamp M J, Cassidy D T, Robinson B J et al. Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers[J]. IEEE Photonics Technology Letters, 10, 1380-1382(1998).

    [118] Hamp M J, Cassidy D T, Robinson B J et al. Nonuniform carrier distribution in asymmetric multiple-quantum-well InGaAsP laser structures with different numbers of quantum wells[J]. Applied Physics Letters, 74, 744-746(1999). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4901331

    [119] Lee B L, Lin C F, Lai J W et al. Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes[J]. Electronics Letters, 34, 1230-1231(1998).

    [120] Yang R Q, Li L, Jiang Y C. Interband cascade lasers: from original concept to practical devices[J]. Progress in Physics, 34, 169-190(2014).

    [121] Yang R Q, Xu J M. Population inversion through resonant interband tunneling[J]. Applied Physics Letters, 59, 181-182(1991). http://scitation.aip.org/content/aip/journal/apl/59/2/10.1063/1.105987

    [122] Yang R Q, Lu J, Xu J M et al. Experimental investigation of the influence of the barrier thickness in double-quantum-well resonant interband tunnel diodes[J]. Canadian Journal of Physics, 70, 1013-1016(1992). http://dx.doi.org/10.1139/p92-162

    [123] Tuttle G, Kroemer H, English J H. Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface[J]. Journal of Applied Physics, 67, 3032-3037(1990). http://scitation.aip.org/content/aip/journal/jap/67/6/10.1063/1.345426

    [124] Spitzer J, Hopner A, Kuball M et al. Influence of the interface composition of InAs/AlSb superlattices on their optical and structural properties[J]. Journal of Applied Physics, 77, 811-820(1995). http://scitation.aip.org/content/aip/journal/jap/77/2/10.1063/1.359004

    [125] Jenichen B, Stepanov S, Brar B et al. Interface roughness of InAs/AlSb superlattices investigated by X-ray scattering[J]. Journal of Applied Physics, 79, 120-124(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5013744

    [126] Kim M, Kim C S, Bewley W W et al. Interband cascade lasers with high CW power and brightness[J]. Proceedings of SPIE, 9370, 937029(2015).

    [127] Kim C S, Kim M, Bewley W W et al. Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature[J]. Applied Physics Letters, 95, 231103(2010). http://www.researchgate.net/publication/224090155_Corrugated-sidewall_interband_cascade_lasers_with_single-mode_midwave-infrared_emission_at_room_temperature

    [128] Edlinger M V, Scheuermann J, Weih R et al. Monomode interband cascade lasers at 5.2 μm for nitric oxide sensing[J]. IEEE Photonics Technology Letters, 26, 480-482(2014).

    [129] Kim C S, Kim M, Abell J et al. Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 ℃[J]. Applied Physics Letters, 101, 061104(2012). http://scitation.aip.org/content/aip/journal/apl/101/6/10.1063/1.4744445

    [130] Koeth J, Weih R, Scheuermann J et al. Mid infrared DFB interband cascade lasers[J]. Proceedings of SPIE, 10403, 1040308(2017).

    [131] Scheuermann J. Weih R, von Edlinger M, et al. Single-mode interband cascade lasers emitting below 2.8 μm[J]. Applied Physics Letters, 106, 161103(2015).

    [132] Xie F, Stocker M, Pham J et al. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls[J]. Applied Physics Letters, 112, 131102(2018). http://adsabs.harvard.edu/abs/2018ApPhL.112m1102X

    [133] Bewley W W, Canedy C L, Kim C S et al. Continuous-wave interband cascade lasers operating above room temperature at λ=4.7-5.6 μm[J]. Optics Express, 20, 3235-3240(2012). http://www.ncbi.nlm.nih.gov/pubmed/22330561

    [134] Ikyo B A, Marko I P, Adams A R et al. Temperature dependence of 4.1 μm mid-infrared type II "W" interband cascade lasers[J]. Applied Physics Letters, 99, 021102(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5956818

    [135] Tian Z, Li L, Ye H et al. InAs-based interband cascade lasers with emission wavelength at 10.4 μm[J]. Electronics Letters, 48, 113-114(2012).

    [136] Li L, Jiang Y C, Ye H et al. Low-threshold InAs-based interband cascade lasers operating at high temperatures[J]. Applied Physics Letters, 106, 251102(2015). http://scitation.aip.org/content/aip/journal/apl/106/25/10.1063/1.4922995

    [137] Rassel S M S, Li L, Li Y Y et al. High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm[J]. Optical Engineering, 57, 011021(2018).

    [138] Arafin S, Bachmann A, Kashani-Shirazi K et al. Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 μm[J]. Applied Physics Letters, 95, 131120(2009). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5281479

    [139] Abell J, Kim C S, Bewley W W et al. Mid-infrared interband cascade light emitting devices with milliwatt output powers at room temperature[J]. Applied Physics Letters, 104, 261103(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6847064

    [140] Kim C S, Bewley W W, Merritt C D et al. Improved mid-infrared interband cascade light-emitting devices[J]. Optical Engineering, 57, 011002(2017).

    [141] Li J V, Yang R Q, Hill C J et al. Interband cascade detectors with room temperature photovoltaic operation[J]. Applied Physics Letters, 86, 101102(2005).

    [142] Hinkey R T, Yang R Q. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors[J]. Journal of Applied Physics, 114, 104506(2013). http://scitation.aip.org/content/aip/journal/jap/114/10/10.1063/1.4820394

    [143] Gautam N, Myers S, Barve A V et al. High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice[J]. Applied Physics Letters, 101, 021106(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6236772

    [144] Tian Z B, Schuler-Sandy T, Krishna S. Electron barrier study of mid-wave infrared interband cascade photodetectors[J]. Applied Physics Letters, 103, 083501(2013).

    [145] Lin Y Z, Li L, Huang W X et al. Quasi-fermi level pinning in interband cascade lasers[J]. IEEE Journal of Quantum Electronics, 56, 1-10(2020). http://ieeexplore.ieee.org/document/9119430

    [146] Yang H T, Yang R Q, Gong J L et al. Mid-infrared widely tunable single-mode interband cascade lasers based on V-coupled cavities[J]. Optics Letters, 45, 2700(2020). http://www.researchgate.net/publication/340435016_mid-infrared_widely_tunable_single-mode_interband_cascade_lasers_based_on_v-coupled_cavities

    [147] Bagheri M, Frez C, Sterczewski L A et al. Passively mode-locked interband cascade optical frequency combs[J]. Scientific Reports, 8, 3322(2018). http://www.nature.com/articles/s41598-018-21504-9

    [148] Schwarz B, Hillbrand J, Beiser M et al. Monolithic frequency comb platform based on interband cascade lasers and detectors[J]. Optica, 6, 890(2019). http://arxiv.org/abs/1812.03879

    [149] Hillbrand J, Beiser M, Andrews A M et al. Picosecond pulses from a mid-infrared interband cascade laser[J]. Optica, 6, 1334(2019). http://arxiv.org/abs/1907.00346?context=physics

    [150] Sterczewski L A, Westberg J, Bagheri M et al. Mid-infrared dual-comb spectroscopy with low drive-power on-chip sources[J]. Optics Letters, 44, 2113(2019). http://arxiv.org/abs/1812.11175v1

    [151] Sterczewski L A, Westberg J, Patrick C L et al. Multiheterodyne spectroscopy using interband cascade lasers[J]. Optical engineering, 57, 011014(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112550799.html

    [152] Sterczewski L A, Bagheri M, Frez C et al. Near-infrared frequency comb generation in mid-infrared interband cascade lasers[J]. Optics Letters, 44, 5828-5831(2019). http://www.researchgate.net/publication/337585777_Near-infrared_frequency_comb_generation_in_mid-infrared_interband_cascade_lasers

    [153] Sterczewski L A, Bagheri M, Frez C et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors[J]. Applied Physics Letters, 116, 141102(2020). http://www.researchgate.net/publication/340546007_Mid-infrared_dual-comb_spectroscopy_with_room-temperature_bi-functional_interband_cascade_lasers_and_detectors

    Yi Zhang, Cheng'ao Yang, Jinming Shang, Yihang Chen, Tianfang Wang, Yu Zhang, Yingqiang Xu, Bing Liu, Zhichuan Niu. Research Progress of Semiconductor Interband Cascade Lasers[J]. Acta Optica Sinica, 2021, 41(1): 0114004
    Download Citation