• Photonics Research
  • Vol. 8, Issue 7, 1093 (2020)
Guanhua Liang1、2、3, Junfeng Jiang1、2、3、*, Kun Liu1、2、3, Shuang Wang1、2、3, Tianhua Xu1、2、3, Wenjie Chen1、2、3, Zhe Ma1、2、3, Zhenyang Ding1、2、3, Xuezhi Zhang1、2、3, Yongning Zhang1、2、3, and Tiegen Liu1、2、3、4
Author Affiliations
  • 1School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Institute of Optical Fiber Sensing of Tianjin University, Tianjin Optical Fiber Sensing Engineering Center, Tianjin 300072, China
  • 3Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China
  • 4e-mail: tgliu@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.389400 Cite this Article Set citation alerts
    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093 Copy Citation Text show less
    Schematic diagram of a WFBGs array system.
    Fig. 1. Schematic diagram of a WFBGs array system.
    DFT simulation results. (a) 3D spatial-temporal profile of original a 20 MHz sinusoidal signal with a varying phase without noise. (b) Phase demodulation result of a 20 MHz sinusoidal signal without noise. (c) 3D spatial-temporal profile of a 20 MHz noise-added sinusoidal signal with a varying phase. (d) Two noise-added signal traces at the moments of t=0 and t=0.1 ms. (e) Phase demodulation result of a 20 MHz noise-loaded sinusoidal signal. (f) R-squared and RMSE of phase demodulation results at different SNRs.
    Fig. 2. DFT simulation results. (a) 3D spatial-temporal profile of original a 20 MHz sinusoidal signal with a varying phase without noise. (b) Phase demodulation result of a 20 MHz sinusoidal signal without noise. (c) 3D spatial-temporal profile of a 20 MHz noise-added sinusoidal signal with a varying phase. (d) Two noise-added signal traces at the moments of t=0 and t=0.1  ms. (e) Phase demodulation result of a 20 MHz noise-loaded sinusoidal signal. (f) R-squared and RMSE of phase demodulation results at different SNRs.
    Raw beat frequency signal at 2 km. (a) 3D spatial-temporal profile at the sensing section. (b) All-fiber signal at the moment t=0 and t=0.1 ms. (c) Sensing section signal at the moment t=0 and t=0.1 ms.
    Fig. 3. Raw beat frequency signal at 2 km. (a) 3D spatial-temporal profile at the sensing section. (b) All-fiber signal at the moment t=0 and t=0.1  ms. (c) Sensing section signal at the moment t=0 and t=0.1  ms.
    Phase demodulation results of different types of PZTs. (a) Reconstructed signal waveforms for PZT1 at different voltages. (b) Demodulation results and fitting curves of different amplitude signals for PZT1. (c) Reconstructed signal waveforms for PZT2 at different voltages. (d) Demodulation results and fitting curves of different amplitude signals for PZT2.
    Fig. 4. Phase demodulation results of different types of PZTs. (a) Reconstructed signal waveforms for PZT1 at different voltages. (b) Demodulation results and fitting curves of different amplitude signals for PZT1. (c) Reconstructed signal waveforms for PZT2 at different voltages. (d) Demodulation results and fitting curves of different amplitude signals for PZT2.
    Time-domain and frequency-domain plots of PZT at different frequencies. (a) Time-domain information of the phase demodulation result of the 0.8 kHz signal. (b) Time-domain information of phase demodulation result of the 1.0 kHz signal. (c) Time-domain information of phase demodulation result of the 1.2 kHz signal. (d) Frequency-domain information of demodulation results for 0.8, 1.0, and 1.2 kHz signals.
    Fig. 5. Time-domain and frequency-domain plots of PZT at different frequencies. (a) Time-domain information of the phase demodulation result of the 0.8 kHz signal. (b) Time-domain information of phase demodulation result of the 1.0 kHz signal. (c) Time-domain information of phase demodulation result of the 1.2 kHz signal. (d) Frequency-domain information of demodulation results for 0.8, 1.0, and 1.2 kHz signals.
    Raw beat frequency signal and phase demodulation results at 101 km. (a) 3D spatial-temporal profile at the sensing section. (b) Sensing section signal and power spectrum at the moment t=0 and t=0.1 ms. (c) The signal demodulation result of the sensing section 1. (d) The signal demodulation result of the sensing section 2.
    Fig. 6. Raw beat frequency signal and phase demodulation results at 101 km. (a) 3D spatial-temporal profile at the sensing section. (b) Sensing section signal and power spectrum at the moment t=0 and t=0.1  ms. (c) The signal demodulation result of the sensing section 1. (d) The signal demodulation result of the sensing section 2.
    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093
    Download Citation