• Photonics Research
  • Vol. 8, Issue 7, 1093 (2020)
Guanhua Liang1、2、3, Junfeng Jiang1、2、3、*, Kun Liu1、2、3, Shuang Wang1、2、3, Tianhua Xu1、2、3, Wenjie Chen1、2、3, Zhe Ma1、2、3, Zhenyang Ding1、2、3, Xuezhi Zhang1、2、3, Yongning Zhang1、2、3, and Tiegen Liu1、2、3、4
Author Affiliations
  • 1School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Institute of Optical Fiber Sensing of Tianjin University, Tianjin Optical Fiber Sensing Engineering Center, Tianjin 300072, China
  • 3Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China
  • 4e-mail: tgliu@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.389400 Cite this Article Set citation alerts
    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093 Copy Citation Text show less

    Abstract

    A phase demodulation method for quasi-distributed acoustic sensing (DAS) systems based on a dual-identical-chirped-pulse and weak fiber Bragg gratings (WFBGs) is proposed. Compared to the use of Rayleigh backscattering light in optical fibers, the implementation of WFBGs can contribute to obtaining an optical signal with a higher signal-to-noise ratio (SNR). The dual-identical-chirped-pulse is generated by a time-delay fiber, and the sinusoidal carrier is generated by the interference between the two chirped pulses reflected by adjacent WFBGs. The phase of the sinusoidal carrier represents the dynamic strain change posed on the sensing fiber. Discrete Fourier transform is used to directly retrieve the phase information. The performance of the phase demodulation from interference signals under different sinusoidal carrier frequencies and SNRs is numerically investigated. The piezoelectric transducer is employed to emulate the sound in the experiment to verify the effectiveness of our method. It is shown that the dynamic strain can be well reconstructed at the end of a 101.64 km fiber when the signal SNR is down to 3.234 dB. Our proposed method enables the application of the long-distance sensing in quasi-DAS systems.
    Em+1=Rm+1E0exp{j2π[f0+f1+k2(t+δT)](t+δT)},t[0,T],(1)

    View in Article

    Em+1=Rm+1E0exp{j2π[(f0+f1+k2t+kδT)t+(f0+f1+k2δT)δT]}Rm+1E0exp{j2π[(f0+f1+k2t)t+(f0+f1)δT]}Rm+1E0exp{j2π[(f0+f1+k2t)t+cλδT]}=Rm+1E0exp{j2π[(f0+f1+k2t)t+nΔlλ]}=Rm+1E0exp{j2π[(f0+f1+k2t)t]+jΔφ},t[0,T],(2)

    View in Article

    Em=RmE0exp{j2π[f0+f1+k2(t+ΔT)](t+ΔT)},t[0,T],(3)

    View in Article

    ΔT=nΔLc,(4)

    View in Article

    IAC=RmRm+1E02cos[2π(kΔT)tΔφ+2π(f0+f1+k2ΔT)ΔT]=cos(2πωtΔφ+φ0),t[0,TΔT],(5)

    View in Article

    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093
    Download Citation