• Photonics Research
  • Vol. 8, Issue 7, 1093 (2020)
Guanhua Liang1、2、3, Junfeng Jiang1、2、3、*, Kun Liu1、2、3, Shuang Wang1、2、3, Tianhua Xu1、2、3, Wenjie Chen1、2、3, Zhe Ma1、2、3, Zhenyang Ding1、2、3, Xuezhi Zhang1、2、3, Yongning Zhang1、2、3, and Tiegen Liu1、2、3、4
Author Affiliations
  • 1School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Institute of Optical Fiber Sensing of Tianjin University, Tianjin Optical Fiber Sensing Engineering Center, Tianjin 300072, China
  • 3Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China
  • 4e-mail: tgliu@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.389400 Cite this Article Set citation alerts
    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093 Copy Citation Text show less
    References

    [1] P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, C. M. Krawczyk. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun., 9, 2509(2018).

    [2] G. Allwood, G. Wild, S. Hinckley. Optical fiber sensors in physical intrusion detection systems: a review. IEEE Sens. J., 16, 5497-5509(2016).

    [3] A. Masoudi, T. P. Newson. Contributed review: distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum., 87, 011501(2016).

    [4] F. Peng, N. Duan, Y.-J. Rao, J. Li. Real-time position and speed monitoring of trains using phase-sensitive OTDR. J. Lightwave Technol., 26, 2055-2057(2014).

    [5] Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, Y. Rao. Coherent phi-OTDR based on I/Q demodulation and homodyne detection. Opt. Express, 24, 853-858(2016).

    [6] B. Lu, Z. Pan, Z. Wang, H. Zheng, Q. Ye, R. Qu, H. Cai. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Opt. Lett., 42, 391-394(2017).

    [7] X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, M. Zhang. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Opt. Lett., 42, 442-445(2017).

    [8] Y. Muanenda, S. Faralli, C. J. Oton, F. Di Pasquale. Dynamic phase extraction in a modulated double-pulse varphi-OTDR sensor using a stable homodyne demodulation in direct detection. Opt. Express, 26, 687-701(2018).

    [9] D. Chen, Q. Liu, X. Fan, Z. He. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio. J. Lightwave Technol., 35, 2037-2043(2017).

    [10] L. Shiloh, A. Eyal. Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing. Opt. Express, 25, 19205-19215(2017).

    [11] Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, A. Wang. A large serial time-division multiplexed fiber Bragg grating sensor network. J. Lightwave Technol., 30, 2751-2756(2012).

    [12] A. B. Am, D. Arbel, A. Eyal. OFDR with double interrogation for dynamic quasi-distributed sensing. Opt. Express, 22, 2299-2308(2014).

    [13] C. Wang, Y. Shang, X. H. Liu, C. Wang, H. H. Yu, D. S. Jiang, G. D. Peng. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings. Opt. Express, 23, 29038-29046(2015).

    [14] Z. Li, Y. Tong, X. Fu, J. Wang, Q. Guo, H. Yu, X. Bao. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings. Opt. Express, 26, 17437-17446(2018).

    [15] Y. Shan, W. Ji, X. Dong, L. Cao, M. Zabihi, Q. Wang, Y. Zhang, X. Zhang. An enhanced distributed acoustic sensor based on UWFBG and self-heterodyne detection. J. Lightwave Technol., 37, 2700-2705(2019).

    [16] G. Yang, X. Fan, Q. Liu, Z. He. Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing. J. Lightwave Technol., 36, 1197-1203(2018).

    [17] Y. Lu, T. Zhu, L. Chen, X. Bao. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol., 28, 3243-3249(2010).

    [18] D. Belega, D. Dallet, D. Petri. Accuracy of sine wave frequency estimation by multipoint interpolated DFT approach. IEEE Trans. Instrum. Meas., 59, 2808-2815(2010).

    [19] D. Agrez. Improving phase estimation with leakage minimization. IEEE Trans. Instrum. Meas., 54, 1347-1353(2005).

    [20] J. Luo, Z. Xie, M. Xie. Interpolated DFT algorithms with zero padding for classic windows. Mech. Syst. Signal Process., 70–71, 1011-1025(2016).

    [21] D. Belega, D. Petri. Sine-wave parameter estimation by interpolated DFT method based on new cosine windows with high interference rejection capability. Digit. Signal Process., 33, 60-70(2014).

    [22] S. Schuster, S. Scheiblhofer, A. Stelzer. The influence of windowing on bias and variance of DFT-based frequency and phase estimation. IEEE Trans. Instrum. Meas., 58, 1975-1990(2009).

    [23] H. G. Guo, J. T. Tang, X. L. Li, Y. Z. Zheng, H. Y. Yu. On-line writing identical and weak fiber Bragg grating arrays. Chin. Opt. Lett., 11, 030602(2013).

    CLP Journals

    [1] Yosuke Mizuno, Antreas Theodosiou, Kyriacos Kalli, Sascha Liehr, Heeyoung Lee, Kentaro Nakamura. Distributed polymer optical fiber sensors: a review and outlook[J]. Photonics Research, 2021, 9(9): 1719

    [2] Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu, Qizhen Sun. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electronic Advances, 2021, 4(5): 200037-1

    Guanhua Liang, Junfeng Jiang, Kun Liu, Shuang Wang, Tianhua Xu, Wenjie Chen, Zhe Ma, Zhenyang Ding, Xuezhi Zhang, Yongning Zhang, Tiegen Liu. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 2020, 8(7): 1093
    Download Citation