• Acta Optica Sinica
  • Vol. 40, Issue 21, 2122001 (2020)
Lufeng Liao1、2, Sikun Li1、2、*, Xiangzhao Wang1、2、**, Libin Zhang2、3, Shuang Zhang2、3, Pengzheng Gao2、3, Yayi Wei2、3, and Weijie Shi4
Author Affiliations
  • 1Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Integrated Circuit Advanced Process R & D Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
  • 4Dongfang Jingyuan Electron Limited, Beijing 100176, China
  • show less
    DOI: 10.3788/AOS202040.2122001 Cite this Article Set citation alerts
    Lufeng Liao, Sikun Li, Xiangzhao Wang, Libin Zhang, Shuang Zhang, Pengzheng Gao, Yayi Wei, Weijie Shi. Critical Pattern Selection Based on Diffraction Spectrum Analysis for Full-Chip Source Mask Optimization[J]. Acta Optica Sinica, 2020, 40(21): 2122001 Copy Citation Text show less
    References

    [1] Quirk M, Serda J. Semiconductor manufacturing technology[M]. New Jersey: Prentice Hall, 367-412(2001).

    [2] Washington: SPIE. 28-[M]. Wong A K. Resolution enhancement techniques in optical lithography. Bellingham, 30, 91-180(2001).

    [4] Melville D, Rosenbluth A E, Tian K et al. Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations[J]. Proceedings of SPIE, 7640, 764006(2010).

    [5] Rosenbluth A E, Bukofsky S J, Hibbs M S et al. Optimum mask and source patterns to print a given shape[J]. Proceedings of SPIE, 4346, 486-502(2001).

    [6] Socha R, Shi X. LeHoty D. Simultaneous source mask optimization (SMO)[J]. Proceedings of SPIE, 5853, 180-193(2005).

    [7] Zhang D Q, Chua G, Foong Y et al. Source mask optimization methodology (SMO) and application to real full chip optical proximity correction[J]. Proceedings of SPIE, 8326, 83261V(2012).

    [8] Pei J, Shao F. ElSewefy O, et al. Compatibility of optimized source over design changes in the foundry environment[J]. Proceedings of SPIE, 8683, 86831M(2013).

    [9] Tian K, Fakhry M, Dave A et al. Applicability of global source mask optimization to 22/20 nm node and beyond[J]. Proceedings of SPIE, 7973, 79730C(2011).

    [10] Ma X, Arce G R. Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography[J]. Optics Express, 17, 5783-5793(2009).

    [11] Wu X F, Liu S Y, Li J et al. Efficient source mask optimization with Zernike polynomial functions for source representation[J]. Optics Express, 22, 3924-3937(2014).

    [12] Li J, Liu S Y, Lam E Y. Efficient source and mask optimization with augmented Lagrangian methods in optical lithography[J]. Optics Express, 21, 8076-8090(2013).

    [13] Yu J C, Yu P. Gradient-based fast source mask optimization (SMO)[J]. Proceedings of SPIE, 7973, 797320(2011).

    [14] Shen Y J, Peng F, Zhang Z R. Semi-implicit level set formulation for lithographic source and mask optimization[J]. Optics Express, 27, 29659-29668(2019).

    [15] Shen Y J, Peng F, Huang X Y et al. Adaptive gradient-based source and mask co-optimization with process awareness[J]. Chinese Optics Letters, 17, 121102(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJdb8bbddd215af691

    [16] Li S K, Wang X Z, Bu Y. Robust pixel-based source and mask optimization for inverse lithography[J]. Optics & Laser Technology, 45, 285-293(2013).

    [17] Lai K, Rosenbluth A E, Bagheri S et al. Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process[J]. Proceedings of SPIE, 7274, 72740A(2009).

    [18] Wang Z, Ma X, Arce G R et al. Information theoretical approaches in computational lithography[J]. Optics Express, 26, 16736-16751(2018).

    [19] Fühner T, Erdmann A, Evanschitzky P. Simulation-based EUV source and mask optimization[J]. Proceedings of SPIE, 7122, 71221Y(2008).

    [20] DeMaris D L, Gabrani M. -03-04[2020-05-30][P/OL]. Volkova E. Method of optimization of a manufacturing process of an integrated circuit layout: US8667427.(2014). https://www.freepatentsonline.com/8667427.pdf.

    [21] Tsai M C, Hsu S, Chen L et al. Full-chip source and mask optimization[J]. Proceedings of SPIE, 7973, 79730A(2011).

    [22] Wong A K. Optical imaging in projection microlithography[M]. Bellingham, Washington: SPIE, 67-69(2005).

    [23] Socha R. Freeform and SMO[J]. Proceedings of SPIE, 7973, 797305(2011).

    [24] Cormen T H, Leiserson C E, Rivest R L et al[M]. Introduction to algorithms, 414-443(2009).

    [25] Deng Y, Zou Y, Yoshimoto K et al. Considerations in source-mask optimization for logic applications[J]. Proceedings of SPIE, 7640, 76401J(2010).

    Lufeng Liao, Sikun Li, Xiangzhao Wang, Libin Zhang, Shuang Zhang, Pengzheng Gao, Yayi Wei, Weijie Shi. Critical Pattern Selection Based on Diffraction Spectrum Analysis for Full-Chip Source Mask Optimization[J]. Acta Optica Sinica, 2020, 40(21): 2122001
    Download Citation