• Photonics Research
  • Vol. 9, Issue 3, 364 (2021)
Yan-Jun Qian1、†, Qi-Tao Cao1、†, Shuai Wan2, Yu-Zhong Gu1, Li-Kun Chen1, Chun-Hua Dong2、6、*, Qinghai Song3、4、7、*, Qihuang Gong1、3、5, and Yun-Feng Xiao1、3、5、8、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 2Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
  • 5Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 6e-mail: chunhua@ustc.edu.cn
  • 7e-mail: qinghai.song@hit.edu.cn
  • 8e-mail: yfxiao@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.414785 Cite this Article Set citation alerts
    Yan-Jun Qian, Qi-Tao Cao, Shuai Wan, Yu-Zhong Gu, Li-Kun Chen, Chun-Hua Dong, Qinghai Song, Qihuang Gong, Yun-Feng Xiao. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity[J]. Photonics Research, 2021, 9(3): 364 Copy Citation Text show less
    References

    [1] R. C. Hilborn. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers(2000).

    [2] M. C. Gutzwiller. Chaos in Classical and Quantum Mechanics(2013).

    [3] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [4] V. A. Podolskiy, E. E. Narimanov. Chaos-assisted tunneling in dielectric microcavities. Opt. Lett., 30, 474-476(2005).

    [5] A. Bäcker, R. Ketzmerick, S. Löck, J. Wiersig, M. Hentschel. Quality factors and dynamical tunneling in annular microcavities. Phys. Rev. A, 79, 063804(2009).

    [6] J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, K. An. Pump-induced dynamical tunneling in a deformed microcavity laser. Phys. Rev. Lett., 104, 243601(2010).

    [7] Q. Song, L. Ge, B. Redding, H. Cao. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett., 108, 243902(2012).

    [8] Q.-F. Yang, X.-F. Jiang, Y.-L. Cui, L. Shao, Y.-F. Xiao. Dynamical tunneling-assisted coupling of high-Q deformed microcavities using a free-space beam. Phys. Rev. A, 88, 023810(2013).

    [9] G. Chern, H. Tureci, A. D. Stone, R. Chang, M. Kneissl, N. Johnson. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett., 83, 1710-1712(2003).

    [10] B. Redding, L. Ge, Q. Song, J. Wiersig, G. S. Solomon, H. Cao. Local chirality of optical resonances in ultrasmall resonators. Phys. Rev. Lett., 108, 253902(2012).

    [11] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 114, 053903(2015).

    [12] S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, H. Cao. Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev., 12, 1800027(2018).

    [13] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [14] C.-H. Yi, J. Kullig, J. Wiersig. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett., 120, 093902(2018).

    [15] C.-H. Yi, J. Kullig, M. Hentschel, J. Wiersig. Non-Hermitian degeneracies of internal–external mode pairs in dielectric microdisks. Photon. Res., 7, 464-472(2019).

    [16] S. Bittner, S. Guazzotti, X. Hu, H. Yilmaz, K. Kim, Y. Zeng, S. S. Oh, Q. J. Wang, O. Hess, H. Cao. Suppressing spatio-temporal lasing instabilities with wave-chaotic microcavities. Science, 361, 1225-1231(2018).

    [17] S. Bittner, K. Kim, Y. Zeng, Q. J. Wang, H. Cao. Spatial structure of lasing modes in wave-chaotic semiconductor microcavities. New J. Phys., 22, 083002(2020).

    [18] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [19] N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, Q. Song. Far-field single nanoparticle detection and sizing. Optica, 4, 1151-1156(2017).

    [20] X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y. F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [21] L. Ge. Quantum chaos in optical microcavities: a broadband application. Europhys. Lett., 123, 64001(2018).

    [22] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [23] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).

    [24] H. G. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B, 21, 923-934(2004).

    [25] S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, C.-M. Kim. Quasiscarred resonances in a spiral-shaped microcavity. Phys. Rev. Lett., 93, 164102(2004).

    [26] J. Ryu, S. Y. Lee, C. Kim, Y. Park. Survival probability time distribution in dielectric cavities. Phys. Rev. E, 73, 036207(2006).

    [27] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 100, 033901(2008).

    [28] S. Shinohara, T. Fukushima, T. Harayama. Light emission patterns from stadium-shaped semiconductor microcavity lasers. Phys. Rev. A, 77, 033807(2008).

    [29] E. G. Altmann. Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics. Phys. Rev. A, 79, 013830(2009).

    [30] J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S. W. Kim, J.-H. Lee, K. An. Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser. Appl. Phys. Lett., 93, 061101(2008).

    [31] J. Yang, S. Lee, S. Moon, S. Y. Lee, S. W. Kim, K. An. Observation of resonance effects in the pump transmission of a chaotic microcavity. Opt. Express, 18, 26141-26148(2010).

    [32] F. Shu, C. Zou, F. Sun. Dynamic process of free space excitation of asymmetric resonant microcavity. J. Lightwave Technol., 31, 1884-1889(2013).

    [33] J.-B. Shim, S.-B. Lee, S. W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, K. An. Uncertainty-limited turnstile transport in deformed microcavities. Phys. Rev. Lett., 100, 174102(2008).

    [34] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett., 104, 163902(2010).

    [35] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, S. Sunada, E. E. Narimanov. Chaos-assisted emission from asymmetric resonant cavity microlasers. Phys. Rev. A, 83, 053837(2011).

    [36] E. J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett., 53, 1515-1518(1984).

    [37] S. B. Lee, J. H. Lee, J. S. Chang, H. J. Moon, S. W. Kim, K. An. Observation of scarred modes in asymmetrically deformed microcylinder lasers. Phys. Rev. Lett., 88, 033903(2002).

    [38] N. Rex, H. E. Tureci, H. Schwefel, R. Chang, A. D. Stone. Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators. Phys. Rev. Lett., 88, 094102(2002).

    [39] H. Kwak, Y. Shin, S. Moon, S.-B. Lee, J. Yang, K. An. Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep., 5, 9010(2015).

    [40] S. Gehler, S. Löck, S. Shinohara, A. Bäcker, R. Ketzmerick, U. Kuhl, H.-J. Stöckmann. Experimental observation of resonance-assisted tunneling. Phys. Rev. Lett., 115, 104101(2015).

    [41] F. Fritzsch, R. Ketzmerick, A. Bäcker. Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E, 100, 042219(2019).

    [42] J. Nöckel, A. Stone, R. Chang. Q spoiling and directionality in deformed ring cavities. Opt. Lett., 19, 1693-1695(1994).

    [43] G. D. Birkhoff. On the periodic motions of dynamical systems. Acta Math., 50, 359-379(1927).

    [44] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [45] Q. Song. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China Phys. Mech. Astron., 62, 074231(2019).

    [46] J. Ward, O. Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev., 5, 553-570(2011).

    [47] Y.-D. Yang, M. Tang, F.-L. Wang, Z.-X. Xiao, J.-L. Xiao, Y.-Z. Huang. Whispering-gallery mode hexagonal micro-/nanocavity lasers. Photon. Res., 7, 594-607(2019).

    [48] L.-K. Chen, Y.-Z. Gu, Q.-T. Cao, Q. Gong, J. Wiersig, Y.-F. Xiao. Regular-orbit-engineered chaotic photon transport in mixed phase space. Phys. Rev. Lett., 123, 173903(2019).

    [49] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).

    [50] D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [51] H. E. Tureci, H. G. L. Schwefel, A. D. Stone, E. E. Narimanov. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Opt. Express, 10, 752-776(2002).

    [52] J. Wang, Z. Lu, W. Wang, F. Zhang, J. Chen, Y. Wang, J. Zheng, S. T. Chu, W. Zhao, X. Q. Little, E. Brent, W. Zhang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).

    [53] S. Sunada, A. Uchida. Photonic reservoir computing based on nonlinear wave dynamics at microscale. Sci. Rep., 9, 19078(2019).

    CLP Journals

    [1] Ang Gao, Chen Yang, Likun Chen, Ru Zhang, Qiang Luo, Wei Wang, Qitao Cao, Zhenzhong Hao, Fang Bo, Guoquan Zhang, Jingjun Xu. Directional emission in X-cut lithium niobate microresonators without chaos dynamics[J]. Photonics Research, 2022, 10(2): 401

    Yan-Jun Qian, Qi-Tao Cao, Shuai Wan, Yu-Zhong Gu, Li-Kun Chen, Chun-Hua Dong, Qinghai Song, Qihuang Gong, Yun-Feng Xiao. Observation of a manifold in the chaotic phase space of an asymmetric optical microcavity[J]. Photonics Research, 2021, 9(3): 364
    Download Citation