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Chaotic dynamics in optical microcavities, governed dominantly by manifolds, is of great importance for both
fundamental studies and photonic applications. Here, we report the experimental observation of a stable mani-
fold characterized by energy and momentum evolution in the nearly chaotic phase space of an asymmetric optical
microcavity. By controlling the radius of a fiber coupler and the coupling azimuth of the cavity, corresponding to
the momentum and position of the input light, the injected light can in principle excite the system from a desired
position in phase space. It is found that once the input light approaches the stable manifold, the angular mo-
mentum of the light experiences a rapid increase, and the energy is confined in the cavity for a long time.
Consequently, the distribution of the stable manifold is visualized by the output power and the coupling depth
to high-Q modes extracted from the transmission spectra, which is consistent with theoretical predictions by the
ray model. This work opens a new path to understand the chaotic dynamics and reconstruct the complex structure
in phase space, providing a new paradigm of manipulating photons in wave chaos. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.414785

1. INTRODUCTION

Chaos, a dynamical behavior with hypersensitivity to initial
conditions, is widely studied in both classical and quantum
physics [1–3]. As a prominent chaotic system, asymmetric op-
tical microcavities have drawn much attention in diverse fields
such as dynamical tunneling [4–8], optical chirality [9–12],
and non-Hermitian physics [13–15]. So far, many high-
performance optical devices have been promoted, including
random lasers [16,17], nanoparticle sensing [18,19], and
broadband optical collection [20–23]. Among these fundamen-
tal studies and practical applications, chaotic dynamics plays a
pivotal role in manipulations of photon evolution in asymmet-
ric microcavities, which is governed dominantly by manifold
structures in position–momentum phase space [3,24].

Over the past decades, much effort has been devoted to
exploring the manifold effects in asymmetric optical microcav-
ities [24–33]. The manifolds have been experimentally inves-
tigated by the output from regular modes to the leaky region in
an asymmetric cavity, i.e., far-field laser emission [24,33–35],

or inversely, by monitoring the efficiency of free-space pumping
[6,30–32]. However, all these experiments are conducted in the
leaky region, while the intermediate chaotic dynamics between
regular modes and the leaky region is treated as a “black box,” in
which the structures of manifolds are still elusive in experi-
ments. Different from the leaky region, the intermediate region
involves much richer physical processes such as scarred modes
[36–38], resonance-assisted tunneling [39–41], and turnstile
transport [30,33]. Hence, the illustration of manifold struc-
tures in this “black box” is important and promising for more
physical research and photonic applications.

In this paper, for the first time, we open this “black box” by
scanning the phase space for a high-Q optical asymmetric mi-
crocavity and observe the structure of the stable manifold.
Experimentally, a nanofiber is used to continuously regulate
the Birkhoff coordinates of the input light in the phase space.
When the light is injected into the region with the stable mani-
fold, the intracavity energy is confined for a long time, and
its angular momentum increases rapidly. According to the
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evolution of the light energy and angular momentum extracted
from the transmission spectra, the stable manifold is visualized
in both numerical simulations and experiments.

2. RAY-MODEL SKETCH

The asymmetric cavity is shown in Fig. 1(a), in which the real-
space trajectory of light can be mapped into the phase space by
the ray model [3,24,42]. Here, the phase space is spanned by
Birkhoff coordinates (ϕ, sin χ) [42,43] where ϕ is the azimuthal
angle and χ is the incident angle [Fig. 1(b)]. The boundary
shape of the cavity used in this work is defined as R�ϕ� �
R0Σ6

n�2f1� an�cos�ϕ��ng, where ϕ is the azimuthal angle,
R0 represents the radius of the cavity, and an is the decisive
boundary parameters. Here we choose a2 � −0.066106,
a3 � −0.097356, a4 � −0.0067262, a5 � 0.070892, and
a6 � −0.0080353 to obtain a nearly chaotic phase space.
When the incident angle χ is smaller than the critical angle
of total internal reflection, the light escapes into the leaky
region which is bounded by the critical line sin χc �
1∕ncavity ≈ 0.55 [black dashed line in Fig. 1(b)]. Note that
the effective refractive index is ncavity � 1.81 for transverse elec-
tric polarization, depending on the material (nsilicon nitride �
2.02) and geometry of the cavity (thickness � 350 nm). In
the upper part of the phase space, the high-Q whispering

gallery modes (WGMs) exist [44–47], supported by
Kolmogorov–Arnold–Moser (KAM) curves [blue points in
Fig. 1(b)] [24]. Between the KAM curves and the critical line,
the region is mainly occupied by chaos, where the stable mani-
fold forms fast channels for chaos-assisted coupling [20,30–32].
Here the stable manifold is defined as the set of points converg-
ing to the corresponding unstable periodic orbits in the forward
time evolution [3,24] and behaves as a curve-like structure in
the phase space [red points in Fig. 1(b)]. Note that the “stable”
indicates a convergence essence of the chaotic motion. In pre-
vious work, the stable manifold is elusive in experiments due to
the absence of an available approach to exciting the chaotic
region [Fig. 1(c)], while in this work the stable manifold is ob-
served by controlling the injection position in phase space
[Fig. 1(d)].

The stable manifold that governs the chaos-assisted coupling
manifests itself as the angular momentum and energy evolution
of the light in the ray model. As shown in Fig. 2(a), when the
Birkhoff coordinate of the input light lies near the stable mani-
fold (point A), the angular momentum of the light, represented
by sin χ, experiences a rapid increase along the stable manifold
within seven reflections and holds an overall trend of increase in
the following reflections. In this case, as presented in Fig. 2(c),
no energy is refracted outside because the angular momentum
remains above the critical line. Here the fact that the light mo-
mentum does not keep converging to the unstable period orbit
[green dots in Fig. 1(b)] is due to the slight deviation from the
stable manifold. This deviation comes from that we cannot
choose a point exactly on the stable manifold because the mani-
folds are infinitesimal structures in phase space. Hence, in
theory, the manifold can only be numerically obtained by ini-
tializing a bunch of points with small deviations from the un-
stable periodic orbit and recording their position of each

Fig. 1. (a) Chaotic ray dynamics in an asymmetric microcavity in
real space. Green lines and purple lines are unstable four-period orbit
and stable four-period orbit, respectively. ϕ: azimuthal angle. χ: inci-
dent angle. (b) The phase space of the chaotic microcavity. Blue points:
KAM curves. Green dots: four-period unstable orbit. Purple dots:
four-period stable orbit. Red points: stable manifold. Black dashed
line: critical line. Point A: (90°, 0.61), near the stable manifold in
the chaotic region. Point B: (30°, 0.61), in the chaotic region away
from the stable manifold. (c) Investigation of the chaotic dynamics
by lasing emission or free-space coupling between regular mode
and leaky region, where the chaotic region is treated as a “black
box.” (d) Probing the stable manifold by precisely controlling the in-
jection position in phase space.

Fig. 2. (a) Angular momentum sin χ versus reflection times starting
from point A and point B as shown in Fig. 1(b). (b) Maximal angular
momentum sin χmax distribution within 50 reflections by the ray
model. Gray dots: stable manifold of the four-period unstable orbit.
(c) Energy intensity versus reflection times starting from point A
and point B. (d) Intracavity energy distribution within 50 reflections
by the ray model.
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evolution, which is a widely applied strategy in studying the
chaotic dynamics in deformed microcavities [3,20,24,34].
Once the initial position is away from the stable manifold
(point B), the angular momentum keeps oscillating around
the critical line and the energy drastically decays considering
Fresnel’s reflection law [26,27]. Furthermore, the maximal an-
gular momentum and intracavity energy of each point in phase
space are obtained by means of the above method as shown in
Figs. 2(b) and 2(d), which is detailed as follows. (i) For the
concerned phase space (ϕ ∈ �0°, 360°�, sin χ ∈ �0.4, 0.92�), the
initial points �ϕi, sin χj� are uniformly sampled (500 × 300);
and (ii) the intracavity energy for each initial point �ϕi, sin χj�
is obtained as Er�ϕi, sin χj�, and the maximum sin χ for each
initial point �ϕi, sin χj� is obtained as sin χmax�ϕi, sin χj�
within 50 reflections. It is found that the maximal angular mo-
mentum and intracavity energy show a similar distribution with
the stable manifold of the four-period unstable orbit. Thus, the
stable manifold can be experimentally probed by initializing the
position of the input light in phase space and analyzing the energy
and angular momentum evolution in the chaos-assisted coupling.

3. EXPERIMENTAL CONFIGURATION

In the experiment, a silicon nitride asymmetric microdisk cavity
with a thickness of 350 nm and a radius of 40 μm is placed on a
rotation stage. Considering the thickness of the cavity is much
less than the wavelength, a two-dimensional ray model is appli-
cable to describe the light propagation inside the cavity. The
impact from the thickness contributes to an effective refractive
index, which is treated as a constant inside the cavity. Note here
the boundary shape and effective refractive index of the cavity
are the same as that used in the ray model. The light from a
continuously tunable laser (New Focus TLB-6712) with trans-
verse electric polarization at the 780 nm band is injected into
the cavity through a tapered nanofiber with continuously var-
iable diameters [Fig. 3(a)]. The power of input light is about
0.1 mW and thus the nonlinear effect is negligible in our ex-
periments. To directly excite the chaotic region, the horizontal
(vertical) Birkhoff coordinate of the input light ϕ0 (sin χ0) is
controlled by the angular coupling position (effective refractive
index) of the nanofiber coupler. Here the effective refractive
index of the nanofiber depends on its diameter. For a specified
fiber diameter and coupling azimuthal angle, the intracavity en-
ergy and angular momentum of the light can be extracted from
the transmission spectra of the cavity. Note that the nanofiber is
contacted to the cavity to exclude the impact by the fiber–cavity
coupling gap. This nanofiber coupling technique was also ap-
plied in previous works for broadband coupling between a
nanowaveguide and high-Q whispering gallery modes [20]
and exploration of regular orbit engineered chaotic dynamics
within a mixed phase space [48].

By scanning the wavelength of input light from 773 to
776 nm, the typical transmission spectra normalized by input
power are obtained at three azimuthal angles (ϕ � 30°, 60°,
90°) with the nanofiber diameter of 415 nm, as shown in
Fig. 3(b). It is found that the spectra present two distinct fea-
tures compared with that of conventional WGM coupling
[49,50]: (i) the output power is mostly weaker than the input
power, and (ii) the transmission spectra strongly depend on the

azimuthal angles. The weak output is attributed to the fact that
when the nanofiber is contacted to the cavity, the input light is
mostly refracted into the cavity and may subsequently experi-
ence extra refractive loss before coupling back to the nanofiber.
Hence, the intracavity energy can be characterized by the out-
put power from the end of the nanofiber. Moreover, by exper-
imentally initializing the input light at different positions in
phase space, the light experiences distinct intracavity evolution,
and the spectra exhibit strong dependences on azimuthal an-
gles. For instance, the transmission spectrum of ϕ � 90°
[corresponding to point A in Fig. 1(b)] is higher than that
of ϕ � 30° [corresponding to point B in Fig. 1(b)], indicating
the existence of the stable manifold therein as predicted by the
ray model.

4. RESULTS AND ANALYSES

We can visualize the stable manifold by analyzing the experi-
mental dependence of the output power on the coupling azi-
muthal position ϕ, as illustrated in Figs. 4(a) and 4(b). Here,
the output power is calculated as the average of the spectrum
(773–776 nm), and the azimuthal angle ϕ is scanned from 30°
to 150° with a step of 3° by controlling the rotation stage. The
diameters of the fiber at the coupling position are chosen as 415
and 530 nm, corresponding to the two lines that cross the re-
gion with a clear structure of the stable manifold in phase space
[Fig. 4(c)].

Fig. 3. (a) Schematic illustration of the fiber–cavity coupling setup.
Inset: scanning electron microscope image of the fiber with a diameter
of D. (b) Typical experimental transmission spectra at different azimu-
thal angles (ϕ � 30°, 60°, 90°) with nanofiber diameter of 415 nm.
The right panel is the zoom-in blue shadow in the spectra. The dashed
line marks a same high-Q mode. The coupling depth is denoted by h.
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Note here we employ a modified ray model to obtain
Fig. 4(c) from Fig. 2(d) considering the wave diffusion. In
the wave optics regime, the initial state of the input light is
not a single point but approximately a 2D Gaussian distribu-
tion, and thus the intracavity energy and maximum sin χ need
to be modified. The formula of Gaussian distribution versus a
given initial point (ϕ0, sin χ0) is presented as follows:

G�ϕi, sin χj�jϕ0, sin χ0
� 1

2πσ1σ2
e
−
�ϕi−ϕ0�2

σ2
1

−
�sin χj−sin χ0�2

σ2
2 , (1)

where σ1 � 0.034 and σ2 � 2.86° obtained by the simulation
of a cavity with experimental size (R0 � 40 μm). The modified
distribution of the intracavity energy E 0

r�ϕ0, sin χ0� is calcu-
lated as follows:

E 0
r�ϕ0, sin χ0� �

X500

i�1

X300

j�1

Er�ϕi, sin χj�G�ϕi, sin χj�jϕ0, sin χ0
:

(2)

Compared with the modified intracavity energy [waterfall
plots in Figs. 4(a) and 4(b)] by the ray model, the experimental
output power behaves as a similar distribution and thus can be
used for the probe of the stable manifold. When the diameter is
415 nm, the output power in measurements [gray histograms
in Fig. 4(a)] manifests one main peak around ϕ � 90°, where
the stable manifold lies. In contrast, the output power is much
weaker in the region away from the stable manifold. When it
comes to the fiber diameter of 530 nm, the output power [gray
histograms in Fig. 4(b)] becomes stronger on the whole, due to
the increasing overlap between line II and the stable manifold.
Notice that the experimental output still presents a
peak around 90° despite the absence of the stable manifold.

This counterintuitive phenomenon arises from the fact that
a four-period island structure exists around (90°, 0.61), result-
ing in energy localization and low refractive loss [7,34,48,51].

Numerically, we conduct the two-dimensional finite-
difference time-domain (2D-FDTD) simulations, covering
the region with ϕ ∈ �30°, 150°� and sin χ ∈ �0.6, 0.7�. The
parameters in the simulation are set the same as those used
in experiments (R � 40 μm), but in a two-dimensional model
due to the limitation of computing resources. By controlling
the coupling azimuthal angle (coupler size), the coordinate
ϕ (sin χ) is scanned with a step of 6° (0.01). The averaged out-
put power under different input conditions is plotted in
Fig. 4(d), exhibiting the consistent pattern compared with
the stable manifold as well as the intracavity energy distribution
by the ray model [Fig. 4(c)].

Besides the energy evolution, the stable manifold is also
visualized by angular momentum transformation, which can
be characterized by the transmission spectra of high-Q regular
modes. As shown in Fig. 1(d), the high-Q regular modes are
established by the following three steps: (i) injection of the light
into the cavity; (ii) the angular momentum transformation of
the light in the chaotic region [Fig. 2(a)] [20]; and (iii) dynami-
cal tunneling into the KAM curves and forming high-Q
WGMs [6,8]. When the injection lies near the stable manifold,
the angular momentum of the light can experience a rapid in-
crease, resulting in the stronger coupling to high-Q modes,
which is confirmed by comparing the coupling depth h at
ϕ � 90° and ϕ � 30° in Fig. 3(b).

Experimentally, eight modes with Q> 105 are selected on
the transmission spectra, and the averaged coupling depths ver-
sus azimuthal angles are plotted in Figs. 5(a) and 5(b), corre-
sponding to line I and line II in Fig. 5(c), respectively. Note
here we employ a modified ray model to obtain Fig. 5(c) from

(a) (b)

(c) (d)

Fig. 5. (a), (b) Experimental coupling depth of high-Q modes (gray
histograms) versus the excitation azimuthal angles in experiments with
nanofiber diameters of 415 and 530 nm and corresponding sin χmax

(waterfall plots) obtained in the ray model. (c) Modified sin χmax dis-
tribution magnified from Fig. 2(b). (d) Distribution of the coupling
depth of high-Q modes extracted from 2D-FDTD simulations, cover-
ing the same region as (c).

(a) (b)

(c) (d)

Fig. 4. (a), (b) Experimental output power (gray histograms) versus
the excitation azimuthal angles in experiments with nanofiber diam-
eters of 415 nm and 530 nm, respectively. The waterfall plots present
corresponding intracavity energy by the ray model. (c) Intracavity
energy distribution by the modified ray model. Gray points: stable
manifold. The black dashed line I (II) marks the corresponding exper-
imental position, i.e., fiber diameters of 415 nm (530 nm), in phase
space. (d) Distribution of the output power obtained by 2D-FDTD
simulations, covering the same region as (c).
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Fig. 2(b) considering the wave diffusion. The momentum
transformation sin χ 0

max�ϕ0, sin χ0� is calculated as follows:

sin χ 0
max�ϕ0, sin χ0�

�
X500

i�1

X300

j�1

sin χmax�ϕi, sin χ j�G�ϕi, sin χj�jϕ0, sin χ0
: (3)

For the diameter of the fiber being 415 nm, it is found that
the stronger coupling occurs around ϕ � 90°, manifesting the
existence of the stable manifold, which also agrees with the re-
sults of energy evolution. When the fiber diameter is chosen as
530 nm, four peaks arise around 33°, 63°, 108°, and 150°, de-
picting the distribution of the stable manifold along line II in
Fig. 5(c). Note that here a valley appears around 90°, which is
attributed to the localization effect of the island structure.
Additionally, the sin χmax is also plotted in Figs. 5(a) and 5(b),
presenting the same behavior as the experimental coupling
depths of high-Q modes. By performing the 2D-FDTD sim-
ulation, the coupling depth of high-Q modes from spectra is
also investigated, shown in Fig. 5(d). The simulation setting is
the same as that in Fig. 4(d), and eight cavity modes with
Q > 7 × 104 are selected, which are confirmed as WGM-like
regular modes by the simulated field distributions. It is found
that the coupling depth distribution by simulations [Fig. 5(d)]
exhibits good agreement with the sin χmax distribution by the
ray model [Fig. 5(c)]. Consequently, by applying this numerical
dense sampling, the quasi-continuous distribution of the
stable manifold within the region ϕ ∈ �30°, 150°� and
sin χ ∈ �0.6, 0.7� is traced out by the high contrast of the
coupling depth.

5. CONCLUSION

Up to now, we have demonstrated the observation of the stable
manifold in simulations and experiments. On the one hand, the
stable manifold can be clearly depicted in the ray model [see
Figs. 2(b) and 2(d)], but wave effects are excluded. On the
other hand, the fine structure in phase space is blurred in
the wave region, leading to a limited observation resolution
both in experiments and simulations [see Figs. 4 and 5].
Meanwhile, the modified ray model employed here combines
the ray model and the wave diffusion effect, which presents
good agreement with the experimental and simulated results.
Considering that the diffused size of input light in phase space
negatively relies on the ratio of cavity diameter to wavelength,
the resolution for the observation of the stable manifold can be
enhanced by decreasing the light wavelength or increasing the
cavity size.

To summarize, we demonstrate the observation of the stable
manifold in the phase space of an asymmetric microcavity char-
acterized by energy evolution and momentum transformation
of the intracavity light. Experimentally, the structure of the sta-
ble manifold is depicted by the output power and the coupling
depth to high-Q modes, which is further confirmed by the
numerical simulations and ray-model prediction. In addition,
we point out that the strategy proposed in our work can be
further optimized by taking more detailed effects into consid-
eration, such as the dynamical tunneling process and the

impact of the unstable manifold. This characterization of
the manifold structures not only experimentally demonstrates
the manifold theory but also provides a guidance for regulation
of the chaotic dynamics as well as the associated optical proper-
ties. This developed experimental method provides a versatile
method to study chaotic dynamics and holds great potential for
the reconstruction of complex structures in the phase space of a
chaotic system. Beyond the fundamental study, the exploration
of the chaotic dynamics also provides an approach to control
the photon by different initialization of the input light in asym-
metric optical microcavities. Considering the abundant physi-
cal phenomena happening in the chaotic region, this work can
also contribute to advanced photonic applications, such as
broadband optical communications [23, 52] and on-chip cha-
otic neural networks [53].
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