• Photonics Research
  • Vol. 10, Issue 2, 269 (2022)
Che-Hsuan Huang1, Yu-Tang Cheng2, Yung-Chi Tsao3, Xinke Liu4, and Hao-Chung Kuo5
Author Affiliations
  • 1College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
  • 2Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China
  • 3Department of Computer Science, University of Liverpool, Liverpool, UK
  • 4College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Microelectronics (IME), Shenzhen University, Shenzhen 518060, China
  • 5Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, Taiwan Yang Ming Chiao Tung University & Taiwan Chiao Tung University, Hsinchu 30010, China
  • show less
    DOI: 10.1364/PRJ.441188 Cite this Article Set citation alerts
    Che-Hsuan Huang, Yu-Tang Cheng, Yung-Chi Tsao, Xinke Liu, Hao-Chung Kuo. Micro-LED backlight module by deep reinforcement learning and micro-macro-hybrid environment control agent[J]. Photonics Research, 2022, 10(2): 269 Copy Citation Text show less
    References

    [1] I. C. Kizilyalli, A. P. Edwards, H. Nie, D. Disney, D. Bour. High voltage vertical GaN p-n diodes with avalanche capability. IEEE Trans. Electron Devices, 60, 3067-3070(2013).

    [2] S. Han, S. Yang, K. Sheng. High-voltage and high-ION/IOFF vertical GaN-on-GaN Schottky barrier diode with nitridation-based termination. IEEE Electron Device Lett., 39, 572-575(2018).

    [3] J. Wang, L. Cao, J. Xie, E. Beam, R. McCarthy, C. Youtsey, P. Fay. High voltage, high current GaN-on-GaN p-n diodes with partially compensated edge termination. Appl. Phys. Lett., 113, 023502(2018).

    [4] S. Pimputkar, J. Speck, S. DenBaars, S. Nakamura. Prospects for LED lighting. Nat. Photonics, 3, 180-182(2009).

    [5] C.-H. Huang, K.-J. Chen, M.-T. Tsai, M.-H. Shih, C.-W. Sun, W.-I. Lee, C.-C. Lin, H.-C. Kuo. High-efficiency and low assembly-dependent chip-scale package for white light-emitting diodes. J. Photon. Energy, 5, 057606(2015).

    [6] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. H. Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [7] R. S. West, H. Konijn, W. Sillevis-Smitt, S. Kuppens, N. Pfeffer, Y. Martynov, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, C. E. Chan. 43.4: high brightness direct LED backlight for LCD-TV. SID Symp. Dig. Tech. Pap., 34, 1262-1265(2003).

    [8] Z. Luo, Y. Chen, S.-T. Wu. Wide color gamut LCD with a quantum dot backlight. Opt. Express, 21, 26269-26284(2013).

    [9] C. H. Huang, C. Y. Kang, S. H. Chang, C. H. Lin, C. Y. Lin, T. Wu, C. W. Sher, C.-C. Lin, P.-T. Lee, H.-C. Kuo. Ultra-high light extraction efficiency and ultra-thin mini-LED solution by freeform surface chip scale package array. Crystals, 9, 202(2019).

    [10] S. Kikuchi, Y. Shibata, T. Ishinabe, H. Fujikake. Thin mini-LED backlight using reflective mirror dots with high luminance uniformity for mobile LCDs. Opt. Express, 29, 26724-26735(2021).

    [11] F.-C. Lin, Y.-P. Huang, L.-Y. Liao, C.-Y. Liao, H.-P. D. Shieh, T.-M. Wang, S.-C. Yeh. Dynamic backlight gamma on high dynamic range LCD TVs. J. Display Technol., 4, 139-146(2008).

    [12] G. Tan, Y. Huang, M.-C. Li, S.-L. Lee, S.-T. Wu. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express, 26, 16572-16584(2018).

    [13] H. Chen, R. Zhu, M.-C. Li, S.-L. Lee, S.-T. Wu. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Opt. Express, 25, 1973-1984(2017).

    [14] S.-W. H. Chen, Y.-M. Huang, K. J. Singh, Y.-C. Hsu, F.-J. Liou, J. Song, J. Choi, P.-T. Lee, C.-C. Lin, Z. Chen, J. Han, T. Wu, H.-C. Kuo. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photon. Res., 8, 630-636(2020).

    [15] E.-L. Hsiang, Z. He, Y. Hung, F. Gou, Y.-F. Lan, S.-T. Wu. Optimal chip size for reducing the power consumption of micro-LED displays. Proc. SPIE, 11708, 117080M(2021).

    [16] C.-H. Huang, S. H. Chang, B.-Y. Liaw, C.-Y. Chou, C.-C. Lin, H.-C. Kuo, L.-J. Song, F. Li, X. Liu. Research on a novel GaN-based converted mini-LED backlight module via a spectrum-decouple system. IEEE Access, 8, 138823-138833(2020).

    [17] E. Chen, J. Guo, Z. Jiang, Q. Shen, Y. Ye, S. Xu, J. Sun, Q. Yan, T. Guo. Edge/direct-lit hybrid mini-LED backlight with U-grooved light guiding plates for local dimming. Opt. Express, 29, 12179-12194(2021).

    [18] E. Chen, H. Xie, J. Huang, H. Miu, G. Shao, Y. Li, T. Guo, S. Xu, Y. Ye. Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays. Opt. Express, 26, 3466-3482(2018).

    [19] H.-R. Moon, M.-H. Shin, J.-Y. Lee, K.-J. Jang, Y.-O. Chung, Y.-J. Kim. Design of integrated light guide plate with functional structure of enhanced diffusion length for ultra-slim LED backlight unit. J. Display Technol., 11, 768-775(2015).

    [20] S. Wang, K. Wang, F. Chen, S. Liu. Design of primary optics for LED chip array in road lighting application. Opt. Express, 19, A716-A724(2011).

    [21] W.-S. Oh, D. Cho, K.-M. Cho, G.-W. Moon, B. Yang, T. Jang. A novel two-dimensional adaptive dimming technique of X-Y channel drivers for LED backlight system in LCD TVs. J. Disp. Technol., 5, 20-26(2009).

    [22] J. H. Lee, S. G. Han, M. J. Jin. Minimum achievable height of a single-module LED low-beam projection headlamp. Appl. Opt., 60, E8-E16(2021).

    [23] R. J. Lin, M.-S. Tsai, C.-C. Sun. Novel optical lens design with a light scattering freeform inner surface for LED down light illumination. Opt. Express, 23, 16715-16722(2015).

    [24] B.-Y. Joo, J.-H. Ko. Analysis of color uniformity of white LED lens packages for direct-lit LCD backlight applications. J. Opt. Soc. Korea, 17, 506-512(2013).

    [25] S.-L. Hsiao, N.-C. Hu, H. Cornelissen. Phosphor-converted LED modeling using near-field chromatic luminance data. Opt. Express, 21, A250-A261(2013).

    [26] S.-S. Schad, B. Neubert, C. Eichler, M. Scherer, F. Habel, M. Seyboth, F. Scholz, D. Hofstetter, P. Unger, W. Schmid, C. Karnutsch, K. Streubel. Absorption and light scattering in InGaN-on-sapphire- and AlGaInP-based light-emitting diodes. J. Lightwave Technol., 22, 2323-2332(2004).

    [27] N. Pendam, C. P. Vardhani. Design and simulation of asymmetrical Y-branch optical power splitter on SOI platform and study the propagation loss with branching angle, index difference, and slab height. 13th International Conference on Fiber Optics and Photonics, W3A.44(2016).

    [28] A. D. Griffiths, J. Herrnsdorf, R. K. Henderson, M. J. Strain, M. D. Dawson. High-sensitivity inter-satellite optical communications using chip-scale LED and single-photon detector hardware. Opt. Express, 29, 10749-10768(2021).

    [29] X. Li, L. Wu, Z. Liu, B. Hussain, W. C. Chong, K. M. Lau, C. P. Yue. Design and characterization of active matrix LED microdisplays with embedded visible light communication transmitter. J. Lightwave Technol., 34, 3449-3457(2016).

    [30] P. S. Rajendran, A. Geetha. Optimization of hospital bed occupancy in hospitals using double deep Q network (DDQN). 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 1029-1033(2021).

    [31] X. Huang, W. Luo, J. Liu. Attitude control of fixed-wing UAV based on DDQN. Chinese Automation Congress (CAC), 4722-4726(2019).

    [32] M. G. P. de Lacerda, F. B. de Lima Neto, H. de Andrade Amorim Neto, H. Kuchen, T. B. Ludermir. On the learning properties of dueling DDQN in parameter control for evolutionary and swarm-based algorithms. IEEE Latin American Conference on Computational Intelligence (LA-CCI), 1-6(2019).

    [33] B. Wang, Y. Li, W. Ming, S. Wang. Deep reinforcement learning method for demand response management of interruptible load. IEEE Trans. Smart Grid, 11, 3146-3155(2020).

    [34] B. C. Sanders, P. Palittapongarnpim, S. S. Vedaie. Reinforcement learning for adaptive optical quantum-enhanced metrology. Imaging and Applied Optics 2018, STu5H.4(2018).

    [35] X. Hu, A. Schülzgen. Design of negative curvature hollow core fiber based on reinforcement learning. J. Lightwave Technol., 38, 1959-1965(2020).

    [36] S. P. K. Karri, D. Chakraborthi, J. Chatterjee. Learning layer-specific edges for segmenting retinal layers with large deformations. Biomed. Opt. Express, 7, 2888-2901(2016).

    [37] R. Zhu, S. Li, P. Wang, L. Li, A. Samuel, Y. Zhao. Deep reinforced energy efficient traffic grooming in fog-cloud elastic optical networks. Optical Fiber Communication Conference (OFC), M1A.4(2020).

    [38] Q. Chen, M. Zhu, T. Shen, J. Gu, C. Yan, P. Gu. Deep-reinforce-learning-assisted network orchestration for VNF-SC provisioning in inter-DC elastic optical networks. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications (ACP/IPOC), M4A.185(2020).

    [39] L. Moro, E. Prati. Optical manipulation of qubits by deep reinforcement learning. OSA Quantum 2.0 Conference, QM6A.4(2020).

    [40] X. Wang, Y. Huang, J. Liu, S. Yu. A subcarrier-slot autonomous partition scheme based on deep-reinforcement-learning in elastic optical networks. Asia Communications and Photonics Conference (ACPC), M4A.211(2019).

    Che-Hsuan Huang, Yu-Tang Cheng, Yung-Chi Tsao, Xinke Liu, Hao-Chung Kuo. Micro-LED backlight module by deep reinforcement learning and micro-macro-hybrid environment control agent[J]. Photonics Research, 2022, 10(2): 269
    Download Citation