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This paper proposes a micro-LED backlight module with a distributed Bragg reflector (DBR) structure to achieve
excellent micro-LED backlight module quality and uses deep reinforcement learning (DRL) architecture for op-
tical design. In the DRL architecture, to solve the computing environment problems of the two extreme structures
of micro-scale and macro-scale, this paper proposes an environment control agent and virtual-realistic workflow
to ensure that the design environment parameters are highly correlated with experimental results. This paper
successfully designed a micro-LED backlight module with a DBR structure by the abovementioned methods.
The micro-LED backlight module with a DBR structure improves the uniformity performance by 32% compared
with the micro-LED backlight module without DBR, and the design calculation time required by the DRL
method is only 17.9% of the traditional optical simulation. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.441188

1. INTRODUCTION

With the evolution of semiconductor process technology in re-
cent decades, III-V compound semiconductors with excellent
direct bandgap features have been extensively employed in vari-
ous fields such as high-power electronics, lighting, and display
technology [1–5]. Light-emitting diodes (LEDs) are the most
widely utilized among them in display technology [6,7]. The
backlight display technology with LED as the display light
source brings superior energy application efficiency and better
color quality than traditional display solutions and guides the
entire display industry to a thinner design [8–10]. In the last
ten years, LED backlight display technology, which was intro-
duced in 2010, has been widely embraced in the global market-
place. There is a more precise blueprint for the future: higher
energy application efficiency, higher color saturation, and the
micro-LED backlight module with ultrahigh contrast control
capability [11–13]. The micro-LED backlight module offers
many advantages to foresight displays, but it also brings many
novel challenges and innovative opportunities. For example,
the quantum-confined Stark effect generated by the thin
epitaxial design in the process stage is alleviated using the

investigation of the nanosphere photomask etching at
NCTU SCLAB [14]. Because of the chip size ratio, the lighting
angle design area is limited, posing novel low-light-loss optical
design challenges [15]. Quite a few research results have also
measured the indirect physical parameters of the overall back-
light design [16]. Designing a micro-LED module with both
high uniformity and low power consumption remains a critical
challenge today. In addition, since quantum dot materials can
significantly enhance the color quality of displays, quantum dot
color conversion technology is also an extremely important and
widely discussed technology in forward-looking display tech-
nology [17,18].

Many mature approaches and physical concepts of optical
design have been established and utilized in various research
efforts during the last half-century. In the field of LED, there
is a great deal of research and analysis on physical models of
different scales [19–27]. However, since the specific manifes-
tations of macro-scale and micro-scale exhibit particle and
wave, it is often impossible to design both macro-scale and
micro-scale at the same time when performing optical
design. This phenomenon has become a challenging issue
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for micro-LED modules that pursue ultrathin design since the
micro-scale of the crystal grain structure and the macro-scale of
the backlight module are both present in the micro-LED
module [28,29]. This paper constructs a set of the optical pro-
gramming process and introduces an environmental control
agent technology to control the macro- and micro-scale.
Furthermore, due to the traditional optimization calculation
methods such as differential evolution and genetic algorithms,
all are rule-based algorithms, which are characterized by inter-
pretability and the use of fewer hyperparameters. Although this
method is convenient for developers to use, it is more difficult
to apply to topics with greater variability. On the contrary, a
data-driven algorithm driven by a large amount of data has
many hyperparameters to solve various changing problems.
In order to achieve a highly adaptable solution, and to avoid
overly sensitive search processes that lead to the inability to find
the global maximum or minimum value, this study provides
artificial intelligence deep reinforcement learning technology
and employs Google DeepMind’s double DQN (DDQN) ar-
chitecture as the core network to create artificial intelligence
optical design agents for optimum optical design [30–33].
Deep reinforcement learning (DRL) and environment control
agent technology are fully implemented in this research
[34–40]. In addition, based on the inference results of the
artificial intelligence model, it successfully produces ultrathin,
high-efficiency, high-uniformity micro-LED modules.

2. EXPERIMENT AND ALGORITHM DESIGN

A. Introduction of the Micro-LED Module and
Optical Events
In the application of foresight displays, the micro-LED backlight
module is the current mainstream developing technology. A com-
plete micro-LED backlight module is shown in Fig. 1. The main
structure contains the substrate, the receiver plane; the LED array,
which has a wavelength spectrum with Gaussian distribution in
which the peak of the spectrum is at 445 nm and the width of
spectrum is 18 nm; and the structure design on the LED. In this

paper, a distributed Bragg reflector (DBR) structure is selected as
the structure to control the light-emitting angle of the LED as
shown in Fig. 1(b), covering each LED under the LED array.
In this module structure, there are four main types of optical events
when the light is emitted from the LED to the receiver plane.

(1) Transmitting through the DBR structure into the
receiver plane: The angle of the light emitted by the LED
and incident into the DBR structure does not reach the total
internal reflection angle. Therefore, it follows Snell’s low and
enters the receiver plane through refraction.

(2) Direct emitting into the receiver plane: The light gen-
erated by the LED is incident directly into the receiver plane
without going through any objects.

(3) Reflect light from the DBR structure: The reflected
light is generated when the angle of the light incident to
DBR reaches the total internal reflection angle (TIR) and enters
the receiver plane.

(4) Reflect light from the receiver plane: Reflected light is
generated when light enters the receiver plane.

Due to the four abovementioned optical events, the light gen-
erates many reflection events between the receiver plane, the
DBR, and the substrate. If a reflection is not incident on a
perfectly reflective surface, it causes energy loss in the opti-
cal system. To reduce the loss, in the module design, a high-
reflectivity coating is used for coating on the substrate surface
as shown in Fig. 1(c), and the diffuser plate with an etched pat-
tern is used as the receiver plane as shown in Fig. 1(d). To reduce
the energy loss, the substrate is coated by a thick TiO2 layer.

After completing the frame design of the module, the im-
portant variables that should be taken into consideration in de-
signing the micro-LED backlight module are indicated in
Figs. 1(a) and 1(b).

(1) Distance (D): distance between substrate and
receiver plane

(2) Space (S): spacing between LED chips
(3) Width (W ): width of the LED
(4) DBR pairs (DBR): the number of DBR pairs

Fig. 1. (a) Schematic diagram of micro-LED backlight module; (b) schematic diagram of LED with DBR structure; (c) highly-reflective surface
substrate; (d) etching structure of the receiver.
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This study will develop an optimization approach for the
architecture’s four-variable design.

B. Overall Design Workflow
As shown in Fig. 2, we provide a comprehensive set of design
methodologies for achieving perfect simulation and optimiza-
tion results. This design process is divided into two major mod-
ules. One is the optimization engine for deep reinforcement
learning as shown in Fig. 2(a). The task of the module is to
optimize the design of artificial intelligence design agents in
a controlled environment. The other core module is simulation
verification, such as Fig. 2(b). This verification aims to ensure
that the environment of the design model is consistent with
the actual field. Thus, the gap is small enough to have a suffi-
cient degree of reliability between the analog design and the
implementation.

Figure 2(a) shows that two core modules make up the opti-
mization engine, namely, the designing agent and the environ-
ment. After the designing agent issues a specified action to the
environment for execution each time, the environment reports
the environment state and reward to the designing agent. The
algorithm network in the designing agent learns deep neural
network (DNN) and guides the policy function to give the fol-
lowing action. After multiple iterations when the reward is sa-
turated, optical design optimization can be obtained. The
neural network model used in this paper is the double deep
Q-learning neural (DDQN) network model published by
Google in 2015, with ϵ-greedy as the core of the optimization
task.

Another part that has a significant impact on the design
results is the environment in the reinforcement learning archi-
tecture. Since the micro-LED backlight module has both a
nano-level structure and a millimeter-level module structure,
macro-scale and micro-scale operations must be taken into

account. Wave optics, in general, dominate the calculation of
the micro-scale; this paper uses Synopsys’ R-soft software for cal-
culations. On the other hand, macro-scale calculation generally
uses geometric optics for optical calculation; this paper adopts
Synopsys’ LightTools software for calculations. Although there
are sophisticated computer-aided engineering (CAE) tools that
can handle micro- and macro-scale problems separately, the
micro-LED backlight module must deal with two extreme di-
mensions at once, and thus we add the notion of environment
control agent and container into the environment as shown in
the environment in Fig. 2(a). We set the environment and data-
base required for the operation of LightTools and R-soft sepa-
rately in the environment design, and then we utilize the
environment agent program to perform collaborative scheduling
of the two container tasks. Through the environment control
agent and independent container settings, we can effectively
solve extreme-scale computing problems.

After completing the environment architecture based on
the environment control agent and containers, as shown in
Fig. 2(b), to accomplish high-reliability simulation, we under-
take two sets of extreme environment individual parameter ver-
ifications between the virtual environment and the actual scene,
which we term a virtual-realistic experiment. In the virtual-
realistic experiment, we compare the completed micro-LED
array sample image with the LightTools simulation image
and quantify the difference through validation to obtain the
best combination of realistic parameters. Similarly, we also
use the completed micro-LED with DBR structure to compare
with R-soft’s simulation result image and quantify the differ-
ence through validation to obtain the best realistic parameter
combination.

This paper will use the optimized architecture of Fig. 2(a)
and the immersive environment setting of Fig. 2(b) to design
a highly reliable micro-LED backlight module.

Fig. 2. Workflow for optimizing micro-LED backlight module: (a) the process of deep reinforcement learning and (b) the process of the virtual-
realistic experiment.
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C. Establishing an Environment Control Agent
The workflow of establishing environment is as shown
in Fig. 3(a). To begin, we implement the first batch of
micro-LED backlight module prototypes, capture images using
a CMOS sensor, and use single chip and chip array images
as a baseline for optimizing simulation parameters. On the
other hand, the optical simulation models of the DBR and
micro-LED backlight module were built using R-soft and
LightTools, respectively. There are six groups of experimental
combinations:

(1) single GaN without DBR in the backlight module,
(2) single GaN with 2.5-pair DBR in the backlight module,
(3) single GaN with 5.5-pair DBR in the backlight module,
(4) GaN array without DBR in the backlight module.

In the simulation, the backlight module’s bottom reflectivity
and receiver reflectivity are the essential systematic variables.
To establish close-to-accurate environmental parameters, the
optical reflection characteristics of actual samples generally have
scattering characteristics. The scattering mode of reflected light
is roughly divided into Gaussian type (the angle between
the main direction of the reflected light and the normal is

consistent with the incident angle) and Lambertian type (the
reflected light at any angle of incidence is scattered along
the normal direction) as shown in Fig. 3(b). We perform sim-
ulation calculations on the bottom reflectivity and receiver re-
flectivity for two scattering modes and five variables (Gaussian
type 0°, Gaussian type 5°, Gaussian type 10°, Gaussian type
15°, and Lambertian type). The schematic diagram of the scat-
tering model is as shown in Fig. 3(b). The variable intervals of
bottom reflectivity and receiver reflectivity are 93%–99% and
20%–40%, respectively; after completing the simulation calcu-
lation, the result matrix output of the simulation calculation
and the image collected by CMOS are calculated for validation
as shown in Fig. 2(b). The calculation is calculated by mean-
square error as Eq. (1):

MSE � 1

N

XN

i�1

�ImgSi − ImgCi�2, (1)

where N is the total number of pixels in the image, i is the pixel
index, ImgS is the image generated by simulation, and ImgC is
the image collected through the CMOS sensor.

Fig. 3. (a) Workflow of environment control agent and schematic diagram of the virtual-realistic experiment; (b) principle of kernel1: Gaussian
and Lambertian reflection; (c) principle of kernel2: BSDF properties.
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After completing the MSE calculation of the virtual-realistic
experiment, we take the parameter combination when the MSE
is minimum as the basic parameters of the environment model.
The equation is expressed as Eq. (2):

Environmentparameters� argmin�MSE�unput_parameters��:
(2)

After completing the value of the environment parameters,
we set up the environments of the micro-scale and macro-scale
in PC2 and PC3 computers, respectively. PC2 constructs a
computing core based on the micro-scale, and its environment
is called container2. The computing kernel in container2 is
thin-film optics, and the main database is the thin-film data-
base, which contains various film material characteristic values
such as refractive index n and extinction coefficient α. On the
other hand, PC3 builds a macro-scale-based computing core,
and its environment is called container1. The computing kernel
in container1 is the Monte Carlo ray-tracing technique, and the
main databases are the material database and bidirectional scat-
tering distribution function (BSDF) database. The calculation
of container2 generates this database as shown in Fig. 3(c).
When incident light enters the film surface, reflection and re-
fraction occur. Since the film surface is not perfectly flat,
it will produce scattered energy distribution no matter whether
it is reflection or refraction. The BSDF database records the
intensity and angular distribution of reflection scattering and
refraction scattering created by rays of various incident
angles incident on the film stack. The optical problems of
micro-scale and macro-scale, respectively, can be handled by
the calculations of container1 and container2. After completing
the PC2 and PC3 environment construction, the two comput-
ing engines cannot transfer sensitively. This paper introduces a
program of environment control agents to PC1 such
as Fig. 3(a). This program transfers the instructions from
the reinforcement learning to PC2 and PC3 work scheduling;
this method can simultaneously assign the action from
reinforcement learning to PC2 and PC3 to perform parallel
processing and optimization processing or directly organize
the state from the micro-scale and macro-scale into a unified
format and output to the reinforcement learning to perform
operations.

D. Definition of Action Function, State Function, and
Reward Function
It can be seen from Fig. 2(a) that in reinforcement learning,
there are three functions, action, state, and reward, that should
be defined between the environment and the designing agent.
Referring to the design parameters in the schematic diagrams of
Figs. 1(a) and 1(b), we define the action function as Table 1.
For the five kinds of variations to adjust up and down, we de-
fined the action functions of a1–a10. In addition, we also define
the state function of S1 to S5 for the five variation states as
shown in Table 2. Finally, referring to the definition of uni-
formity of the backlight module, we have set three different
reward functions as Eqs. (3)–(5):

reward function1 � �Uniformity new

−Uniformity old�∕100, (3)

reward function2 � �Uniformity − 75�3∕1000, (4)

reward function3 � �Uniformity − 79�3∕1000: (5)

Among them, Eq. (3) adopts the floating reward computer
system, while Eqs. (4) and (5) adopt the computer system
of fixed uniformity comparison method. First, we need to de-
fine the environment’s boundary value before executing the
reinforcement learning calculation. The environment parame-
ters are as Table 3.

E. Double Deep Q-learning Neural Network
As shown in Fig. 2(a), the double DQN (DDQN) network is
used as the optimized algorithm in this paper. The detailed cal-
culation process is shown in Fig. 4. The action (at ) is issued to
the environment control agent through the ϵ-greedy policy cal-
culation. After the control and calculation of the environment
control agent, the tth and the (t � 1)th states, St , St�1, action
and reward values are reported. The state, action, and reward
values of each iteration are recorded through the replay
memory. Then through two neural networks of Q network
(θt ) and target Q network (θ 0

t ), we calculate the loss function
to determine the new parameter update. Target Q and loss
function are defined as in Eqs. (6) and (7):

TargetQ � Rt�1 � γQ�St�1,MaxQ�St�1, a; θt�, θ 0
t�, (6)

where Rt�1 is the reward value of (t � 1)th state, and γ is the
model hyperparameters, and

Table 1. Definition List of Action

Action No. Action Definition Variation Symbol

a1 Add distance D
a2 Reduce distance D
a3 Add width W
a4 Reduce width W
a5 Add spacing S
a6 Reduce spacing S
a7 Add thickness T
a8 Reduce thickness T
a9 Add DBR pairs DBR
a10 Reduce DBR pairs DBR

Table 2. Definition List of State

State No. State Definition Variation symbol

S1 Value of distance D
S2 Value of spacing W
S3 Value of DBR pairs S
S4 Value of thickness T
S5 Value of width DBR

Table 3. Definition List for Range of Parameters

No. Parameters
Variation
Symbol Range

1 Distance from receiver to LED D 100–180 μm
2 LED width W 10–100 μm
3 LED spacing S 300–700 μm
4 Thickness of LED T 5–55 μm
5 DBR-BSDF pairs DBR 4.5–9.5 pairs
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Loss function�MSE� � L�θ� � ��TargetQ − Q�s, a; θt��2�:
(7)

After multiple iterations, an optimal result can be obtained
when the loss function value converges.

3. RESULT

A. Virtual-Realistic Experiment
The parameter setting of the environment construction is often
an essential element that determines the accuracy of the final
model. This paper starts the virtual-realistic experiment when
the environment is built. According to the actual sample pro-
duction, we use GaN as the epitaxial structure of the wafer
and use AlN/GaN as a DBR structural material, and its related
fixed parameters are shown in Table 4. The experimental re-
sults are shown in Fig. 5. According to Fig. 5(a), we show
the actual shooting results of a single chip with no DBR struc-
ture, 2.5 pairs DBR, and 5.5 pairs DBR, and the results of MSE
calculation on the image after changing the bottom reflectivity.
As a result, the curves of the Gaussian type are all lower than the
Lambertian type, and the minimum value can be found when
reflectivity is 97%. From the experimental results, we can
choose the parameters with the lowest MSE: Gaussian

scattering � 5, reflectivity � 97% as the environmental
parameters of bottom reflectivity. In addition, panels i, ii, and
iii in Fig. 5(a) respectively show the actual shooting results of
without DBR, 2.5 pairs DBR, and 5.5 pairs DBR, while panels
iv, v, and vi are the calculated results after selecting the best bot-
tom reflectivity. It is found that the chip without DBR structure
has a hot spot phenomenon with concentrated brightness in the
center of the spot, and the same phenomenon is also observed in
the simulation results. Furthermore, there is a dark spot phe-
nomenon in the middle of the 5.5 pairs spot with lower bright-
ness than the periphery, which is observed in the simulation
results as well. According to the above results, this set of bottom
reflectivity parameters has sufficient reliability.

In addition, according to Fig. 5(b), we show the experimen-
tal results of the array type. The experimental results of the ar-
ray type are mainly used to calculate the best receiver
reflectivity. In the actual sample, the receiver is a PMMA struc-
ture with a surface etching pattern. The main optical mecha-
nisms of this structure are mostly reflection, scattering, and
refraction. In this experimental result, the Lambertian type
has a lower MSE calculation result, and the Lambertian type
has the lowest MSE value when the reflectivity is 35%, so
the Lambertian type, receiver reflectivity � 35%, is selected
for the receiver reflectivity parameters. Panels i, ii, and iii in
Fig. 5(b) respectively show the actual shooting results of with-
out DBR, 2.5 pairs DBR, and 5.5 pairs DBR. It can be found
that the dark band between chip and chip gradually brightens
due to DBR. The gradual brightening trend can also be found
in the simulation results of panels iv, v, and vi. According to the
above qualitative and quantitative analysis results, this set of
receiver reflectivity parameters also has sufficient reliability.
Combining the above results, we can set the environmental
parameters in Table 4.

B. Result of Reinforcement Learning
After constructing the environment, we use DDQN network
for reinforcement learning and set three different reward

Fig. 4. Workflow of DDQN network.

Table 4. Results of Virtual-Realistic Experiment

No. Parameters Value

1 Bulk of GaN-based
light-emitting diodes

Refraction index 2.4869

2 High-reflectivity white bottom
surface of module

Gaussian type 5° with 97%

3 Receiver reflectivity Lambertian with 35%
4 Index of DBR material (AIN/GaN) nAIN � 2.1793∕

nGaN � 2.4869
5 Thickness of DBR material

(AIN/GaN)
tAIN � 51.6 nm∕
tGaN � 45.2 nm

274 Vol. 10, No. 2 / February 2022 / Photonics Research Research Article



functions and parameter optimization boundaries in reinforce-
ment learning, such as Tables 3 and 4. The design of reward
function1 is defined as “strict decreasing,” which means it is
required that each loss must be lower than the previous one.
Besides, reward function2 and reward function3 are defined
as the reward function compared with a fixed reference value.
Since reward functions2 and 3 do not need to follow strict in-
cremental rules, they can avoid overfitting and have a more sta-
ble convergence result.

The experimental results are shown in Figs. 6(a), 6(b), and
6(c), respectively, representing uniformity for every iteration
with reward functions 1, 2, and 3. The iteration results using
reward function1 are volatile initially, and results with a uni-
formity of 0 often appear. Although it does not reach the
more stable operation optimization until after 250 iterations,

the value can still discover a significant attenuation instability
result in the stable area. The best result appears in the 289th
iteration. The result is shown in Fig. 6(d). According to the
value of the average Y � 0 mm cutoff line, the uniformity
calculation is written as Eq. (8):

Uniformity � min�L�25%, 75%��∕max�L�25%, 75%��, (8)

where L is the cutoff line when Y � 0 mm and L [25%,75%]
means to take the value of the 25th to 75th interval of the
L line.

Figure 6(d) shows that the state of the best solution when
calculating reward function1 is Sb1�D� 0.18 mm,W �
0.04 mm, S � 0.4 mm, T � 0.02 mm, DBR � 5.5 pairs�,
and the uniformity at this time is 83.97%. In addition, in
Figs. 6(b) and 6(c) when using reward function2 and reward

Fig. 5. Virtual-realistic experiment: (a) single light pattern analysis; (b) module pattern analysis.

Fig. 6. Result of reinforcement learning: (a) uniformity for every iteration with reward function1; (b) uniformity for every iteration with reward
function2; (c) uniformity for every iteration with reward function3; (d) the best result by reward function1; (e) the best result by reward function2;
(f ) the best result by reward function3.
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function3, they can reach a stable state with a small number of
iterations and are less prone to computing crashes. In Figs. 6(b)
and 6(c), the best solutions can be found when the numbers
of iterations are 183 and 249. The results of the best solutions
are shown in Figs. 6(e) and 6(f ). The state is Sb2�D �
0.16 mm, W � 0.02 mm, S � 0.46 mm, T � 0.015 mm,
DBR � 5.5 pairs� and Sb3�D � 0.18 mm,W � 0.028 mm,
S � 0.5 mm,T � 0.035 mm,DBR � 6.5 pairs�, while the
uniformity is 86.51% and 90.32%, respectively.

C. Result of Real Sample
After completing the optimized model design above, we made
a prototype demonstration according to the Sb3 design. Using
the DBR structure can reduce the overall graininess as shown
in Fig. 7.

4. DISCUSSION

According to the above experimental results, the designing
agent designed by the method proposed in this paper can

effectively optimize the optical design, but more physical char-
acteristics still need to be summarized. We will focus on the
following points and discuss them.

(1) Inference of DBR structure
(2) Energy loss mechanism of the micro-LED backlight

module
(3) Designing rule of the micro-LED backlight module
(4) Work efficiency of reinforcement learning

A. Inference of DBR Structure
First, we set the state Sb3�D � 0.18 mm,W � 0.028 mm,
S � 0.5 mm,T � 0.035 mm,DBR � 6.5 pairs� of the best
calculation result as the experimental group with DBR, and
we set the DBR in Sb3 to 0 as the control group, S 0

b3�D �
0.18 mm, W � 0.028 mm, S� 0.5 mm, T � 0.035 mm,
DBR� 0 pairs�; the comparison result is shown in Fig. 8.
Figures 8(a) and 8(b) are the optical class distributions of S 0

b3
and Sb3, respectively. It is obvious that S 0

b3 without DBR struc-
ture has apparent hot spot distribution, while Sb3 with DBR
structure has no apparent hot spot distribution. Figure 8(c)
shows the energy distribution results of Sb3 and S 0

b3 at
Y � 0 mm. From this result, it can be calculated that the
illuminance of Sb3 is 109,814 lux, the uniformity is 90.32%,
and the illuminance of S 0

b3 is 119,910 lux, the uniformity is
68.15%. The DBR structure will reflect a large amount of light
emitted by the chip to the backplane, resulting in a certain de-
gree of energy loss. The energy loss in this design is only 8.5%.
In addition, the reflected light also improves the energy loss
between the chips. The energy of the space enables the light
energy originally distributed above the wafer to be guided to
the dark band between the wafers. Overall, the DBR structure
improves the uniformity by 32%.

B. Energy Loss Mechanism of the Micro-LED
Backlight Module
We can observe from the above results that DBR can optimize
the light energy of the dark band by reflecting the light of the
chip. In the process, each reflection is often accompanied by
energy loss as shown in Fig. 9. The light loss generated by
the light reflected by the DBR structure to the backplane is
the main energy loss mechanism of the micro-LED backlight
module, and the other is the light loss caused by the light
reflected by the receiver to the backplane as shown in Fig. 1.

Fig. 7. Demonstration of the micro-LED backlight module.

Fig. 8. Influence of DBR structure: (a) light pattern with state S 0
b3, (b) light pattern with state Sb3, and (c) uniformity of Sb3 and S 0

b3.
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The structure of the micro-LED backlight module uses a
high-thickness and highly-reflective filler surface reflective paint
structure from the beginning of the architecture due to the con-
sideration of optical event3 and optical event4. This structure is
concluded to have a reflectivity of up to 97% in the results of
the virtual-realistic experiment, allowing the optical loss of the
entire system to reduce to within 10%.

C. Designing Rule of the Micro-LED Backlight
Module
Table 5 provides the optimization results under different re-
ward function designs. Sb1�D� 0.18 mm,W � 0.04 mm,
S � 0.4 mm, T � 0.02 mm, DBR � 5.5 pairs�, Sb2�D �
0.16 mm, W � 0.02 mm, S� 0.46 mm, T � 0.015 mm,
DBR� 5.5 pairs�, and Sb3�D� 0.18 mm,W � 0.028 mm,
S� 0.5 mm, T � 0.035 mm, DBR� 6.5 pairs�. Further
analysis of the results of these three sets of the state, except
for Sb2, all gets the conclusion that optical distance �D� is
0.18 mm; this value is the maximum value in the optimization
parameter range we set, and this result is consistent with the
designing rule of the traditional LCD backlight module. On
the other hand, the main factor that affects the result of
Sb1, Sb2, and Sb3 is the space energy between the chips. As
shown in Fig. 8, the ability to transfer the energy at the center
of the chip to a large angle will help suppress the hot spot on the
chip and the dark spot phenomenon between chips. We take
outW and T from Sb1, Sb2, and Sb3 and calculate the geomet-
rical factor f as the Eq. (9) based on the lateral and forward
light-emitting surface area:

f � 4T
W

, (9)

where T is the thickness of the LED andW is the width of the
LED. The symbols of parameters are as shown in Fig. 1.

The f values of Sb1, Sb2, and Sb3 are respectively 2, 3, and 5.
According to previous research, a larger f value can provide a
larger light-emitting angle, increasing the occurrence ratio of
optical event2 at the chip pitch. The DBR parameter of Sb3

is 6.5 pairs, while the DBR parameter of Sb1 and Sb2 is 5.5
pairs. It has higher reflectivity, which can reduce the incidence
of optical event1, reduce optical event1 and increase optical
event2 to achieve significant energy transfer so that Sb3 has
the best optical uniformity design result.

D. Work Efficiency of Reinforcement Learning
In this study, a high-efficiency designing agent is established
through reinforcement learning and environment control agent.
To ensure that the solution obtained by the designing agent
within the parameter limit interval is the best, step is added
to the lower limit interval defined in the D, W , S, T , and
DBR in Table 3 to perform a full-variable loop operation, entire
loop. The steps of the parameters D,W , S, T , and DBR are 10,
10, 50, 10, and 0.5, respectively. Thus, we get that D,W , S, T ,
and DBR have 18, 10, 9, 6, and 11 variable values, respectively.
There are 106,920 combinations in total. The total calculation
time is 297 h. The best result obtained is uniformity 89.61%.
On the other hand, the design of reinforcement learning is
adopted. The agent performs a total of 16,000 calculations
and takes 53.3 h. The best result obtained is uniformity
90.32% as shown in Table 6. Thus, the designing agent only
needs 17.9% of the entire loop in optimized solution time.

According to Table 6, although the entire loop seems to de-
scribe the complete solution plane, since the steps of each
parameter are fixed values, the solution plane depicted by
the entire loop is a plane depiction of a discrete solution.
On the other hand, it adopts the designing agent of reinforce-
ment learning that has the characteristics of a deep learning
solution, which is to narrow the search range to find the best
solution. Therefore, it can provide more efficient and superior
optimization solutions.

5. CONCLUSION

Traditional optical design methods generally emphasize the ac-
curacy of model parameters. There are many studies on meas-
uring detailed parameters; however, considering the influence
of extreme scales at the same time can be challenging. The envi-
ronment control agent technology introduced in this research

Fig. 9. Schematic of resonant loss for the micro-LED backlight
module.

Table 5. Best Uniformity for Different Reward Functions

Best State Reward Formula Parameters Number of Iterations
Best

Uniformity

Sb1 �Uniformity new −Uniformity old�∕100 D � 0.18 mm, W � 0.04 mm,
S � 0.4 mm, T � 0.02 mm, DBR � 5.5 pairs

289 83.97%

Sb2 �Uniformity − 75�3∕1000 D � 0.16 mm, W � 0.02 mm,
S � 0.46 mm, T � 0.015 mm, DBR � 5.5 pairs

183 86.51%

Sb3 �Uniformity − 79�3∕1000 D � 0.18 mm, W � 0.028 mm,
S � 0.5 mm, T � 0.035 mm, DBR � 6.5 pairs

249 90.32%

Table 6. Work Efficiency of Designing Agent

Number of
Iterations

Time
(h)

Optimal
Result

Entire loop 106,920 297 Uniformity: 89.61%
Designing agent 16,000 53.3 Uniformity: 90.32%
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efficiently integrated micro-scale and macro-scale models into
a single set of optimization models, eliminating all calcula-
tion barriers imposed by different calculation scales. A high-
efficiency model optimization design method for micro-LED
backlight modules is also provided by the reinforcement
learning model.

In comparison to the entire loop mode, a higher resolution
optimal position on the solution plane can be determined;
hence, the designing agent’s optimization result is somewhat
better than that of the entire loop. Besides, compared with
the multi-parameter discrete loop solution, the designing agent
can find a more accurate solution, and it only needs 17.9% of
the entire loop time to find a solution. This research success-
fully developed a micro-LED backlight module with a DBR
structure as the backlight uniformity optimization element us-
ing a novel multi-environment control approach and reinforce-
ment learning framework. Its uniformity has improved by 32%
when compared to a micro-LED backlight module without a
DBR structure.
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