• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 595 (2021)
Guo-Shuai WEI1, Rui-Ting HAO1、*, Jie GUO1, Xiao-Le MA1, Xiao-Ming LI1, Yong LI1, Fa-Ran CHANG1, Yu ZHUANG1, Guo-Wei WANG2、3、**, Ying-Qiang XU2、3, Zhi-Chuan NIU2、3, and Yao WANG4
Author Affiliations
  • 1School of Energy and Environment Science,Yunnan Normal University,Kunming 650092,China
  • 2State Key Laboratory for SLs and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 3Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China
  • 4National Center for International Research on Green Optoelectronics,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology,Institute of Electronic Paper Displays,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.005 Cite this Article
    Guo-Shuai WEI, Rui-Ting HAO, Jie GUO, Xiao-Le MA, Xiao-Ming LI, Yong LI, Fa-Ran CHANG, Yu ZHUANG, Guo-Wei WANG, Ying-Qiang XU, Zhi-Chuan NIU, Yao WANG. High quality strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 595 Copy Citation Text show less
    References

    [1] G A Sai‐Halasz, R Tsu, L Esaki. A new semiconductor superlattice. Applied Physics Letters, 30, 651-653(1977).

    [2] L Esaki. InAs-GaSb superlattices-synthesized semiconductors and semimetals. Journal of Crystal Growth, 52, 227-240(1981).

    [3] D L Smith, C Mailhiot. Proposal for strained type II superlattice infrared detectors. Journal of Applied Physics, 62, 2545-2548(1987).

    [4] A Rogalski, P Martyniuk, M Kopytko. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Applied Physics Reviews, 4(2017).

    [5] Z Deng, D Q Guo, C G Burguete et al. Demonstration of Si based InAs/GaSb type-II superlattice p-i-n photodetector. Infrared Physics & Technology, 101, 133-137(2019).

    [6] R Muller, V Gramich, M Wauro et al. High operating temperature InAs/GaSb type-II superlattice detectors on GaAs substrate for the long wavelength infrared. Infrared Physics & Technology, 96, 141-144(2019).

    [7] Y Chen, J F Liu, Y Zhao et al. MOCVD growth of InAs/GaSb type-II superlattices on InAs substrates for short wavelength infrared detection. Infrared Physics & Technology, 105(2020).

    [8] A Rogalski, P Martyniuk, M Kopytko. Challenges of small-pixel infrared detectors: a review. Rep Prog Phys, 79, 046501(2016).

    [9] Y Aytac, B V Olson, J K Kim et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices. Applied Physics Letters, 105(2014).

    [10] A Soibel, D Z Ting, S B Rafol et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Applied Physics Letters, 114(2019).

    [11] Y Huang, J H Ryou, R D Dupuis et al. Epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-II superlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors. Journal of Crystal Growth, 314, 92-96(2011).

    [12] J Matthews. Defects in epitaxial multilayers I. Misfit dislocations. Journal of Crystal Growth, 27, 118-125(1974).

    [13] F M Mohammedy, M J Deen. Growth and fabrication issues of GaSb-based detectors. Journal of Materials Science-Materials in Electronics, 20, 1039-1058(2009).

    [14] R T Hao, Y Ren, S J Liu et al. Fabrication and characterization of high lattice matched InAs/InAsSb superlattice infrared photodetector. Journal of Crystal Growth, 470, 33-36(2017).

    [15] F R Chang, R T Hao, T T Qi et al. High material quality growth of AlInAsSb thin films on GaSb substrate by molecular beam epitaxy. Chinese Physics B, 28(2019).

    [16] Q Durlin, J P Perez, R Rossignol et al. InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain. Quantum Sensing and Nano Electronics and Photonics Xiv, 10111(2017).

    [17] H Li, S Liu, O O Cellek et al. A calibration method for group V fluxes and impact of V/III flux ratio on the growth of InAs/InAsSb type-II superlattices by molecular beam epitaxy. Journal of Crystal Growth, 378, 145-149(2013).

    [18] T Schuler-Sandy, B K L Casias, L Casias et al. Growth of InAs-InAsSb SLS through the use of digital alloys. Journal of Crystal Growth, 425, 29-32(2015).

    [19] S Liu, H Li, O O Cellek et al. Impact of substrate temperature on the structural and optical properties of strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy. Applied Physics Letters, 102(2013).

    [20] H J Haugan, K Mahalingam, F Szmulowicz et al. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices. Journal of Crystal Growth, 436, 134-137(2016).

    [21] A P Ongstad, R Kaspi, C E Moeller et al. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices. Journal of Applied Physics, 89, 2185-2188(2001).

    Guo-Shuai WEI, Rui-Ting HAO, Jie GUO, Xiao-Le MA, Xiao-Ming LI, Yong LI, Fa-Ran CHANG, Yu ZHUANG, Guo-Wei WANG, Ying-Qiang XU, Zhi-Chuan NIU, Yao WANG. High quality strain-balanced InAs/InAsSb type-II superlattices grown by molecular beam epitaxy[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 595
    Download Citation