• Journal of Semiconductors
  • Vol. 42, Issue 4, 042302 (2021)
Yuhua Li1、2, Xiang Wang3, Roy Davidson3, Brent E. Little4, and Sai Tak Chu2
Author Affiliations
  • 1Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 2Department of Physics, City University of Hong Kong, Hong Kong 999077, China
  • 3QXP Technology Inc., Xi’an 710119, China
  • 4State Key Laboratory of Transient Optics and Photonics, XIOPM, CAS, Xi’an 710119, China
  • show less
    DOI: 10.1088/1674-4926/42/4/042302 Cite this Article
    Yuhua Li, Xiang Wang, Roy Davidson, Brent E. Little, Sai Tak Chu. Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. Journal of Semiconductors, 2021, 42(4): 042302 Copy Citation Text show less
    References

    [1] S Y Lin, E Schonbrun, K Crozier. Optical manipulation with planar silicon microring resonators. Nano Lett, 10, 2408(2010).

    [2] Q Lin, J Zhang, G Piredda et al. Dispersion of silicon nonlinearities in the near infrared region. Appl Phys Lett, 91, 021111(2007).

    [3] Y Shoji, T Ogasawara, T Kamei et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt Express, 18, 5668(2010).

    [4] K Ikeda, R E Saperstein, N Alic et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 16, 12987(2008).

    [5] H R Guo, C Herkommer, A Billat et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat Photonics, 12, 330(2018).

    [6] V Brasch, M Geiselmann, T Herr et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357(2016).

    [7] M Karpov, M H Pfeiffer, H R Guo et al. Dynamics of soliton crystals in optical microresonators. Nat Phys, 15, 1071(2019).

    [8] H L Bao, A Cooper, M Rowley et al. Laser cavity-soliton microcombs. Nat Photonics, 13, 384(2019).

    [9] B Corcoran, M X Tan, X Y Xu et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 11, 2568(2020).

    [10] N Singh, M Raval, A Ruocco et al. Broadband 200-nm second-harmonic generation in silicon in the telecom band. Light Sci Appl, 9, 17(2020).

    [11] F X Wang, W Q Wang, R Niu et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 14, 1900190(2020).

    [12] H T Lin, Y Song, Y Z Huang et al. Chalcogenide glass-on-graphene photonics. Nat Photonics, 11, 798(2017).

    [13] Y Zhao, J Lu, Y Y Huo et al. Enhanced third harmonic generation from graphene embedded in dielectric resonant waveguide gratings. Opt Commun, 447, 30(2019).

    [14] D J Moss, R Morandotti, A L Gaeta et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 7, 597(2013).

    [15] M Ferrera, L Razzari, D Duchesne et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2, 737(2008).

    [16] M Ferrera, Y Park, L Razzari et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 1, 29(2010).

    [17] L Razzari, D Duchesne, M Ferrera et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 4, 41(2010).

    [18] A Pasquazi, M Peccianti, Y Park et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 5, 618(2011).

    [19]

    [20] A Martínez, S Hernández, Y Lebour et al. Two-photon absorption in Si-nanocrystals deposited by plasma-enhanced chemical-vapor deposition. Physica E, 41, 1002(2009).

    [21] B Little. A VLSI photonics platform. Optical Fiber Communications Conference, 444(2003).

    [22] J Wu, Y Yang, Y Qu et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small, 16, 1906563(2020).

    [23] P Sanchis, J Blasco, A Martinez et al. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J Lightwave Technol, 25, 1298(2007).

    [24] R Spano, N Daldosso, M Cazzanelli et al. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550 nm. Opt Express, 17, 3941(2009).

    [25] Y H Li, K Zhu, Z Kang et al. CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion. Photon Res, 7, 1200(2019).

    [26]

    [27] B E Little, S T Chu, H A Haus et al. Microring resonator channel dropping filters. J Lightwave Technol, 15, 998(1997).

    [28] P P Absil, J V Hryniewicz, B E Little et al. Wavelength conversion in GaAs micro-ring resonators. Opt Lett, 25, 554(2000).

    [29] B E Little, S T Chu, P P Absil et al. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol Lett, 16, 2263(2004).

    [30] M Ferrera, D Duchesne, L Razzari et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt Express, 17, 14098(2009).

    Yuhua Li, Xiang Wang, Roy Davidson, Brent E. Little, Sai Tak Chu. Four-wave mixing in silicon-nanocrystal embedded high-index doped silica micro-ring resonator[J]. Journal of Semiconductors, 2021, 42(4): 042302
    Download Citation