• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0114002 (2024)
Xiaojun Xu*
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/LOP232463 Cite this Article Set citation alerts
    Xiaojun Xu. Development and Challenges of High Energy Diode Pumped Alkali Lasers (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114002 Copy Citation Text show less
    References

    [1] Xu X J. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 32, 011007(2020).

    [2] Liu Z J, Wang H Y, Xu X J. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).

    [3] Liu Z J, Yang W Q, Han K et al. Research on the design criteria of laser weapons[J]. Chinese Journal of Lasers, 48, 1201001(2021).

    [4] Su Y, Wan M[M]. High energy laser system, 114-153(2004).

    [6] Bowman S R. High-power diode-pumped solid-state lasers[J]. Optical Engineering, 52, 021012(2012).

    [7] Krupke W F. Diode-pumped alkali laser[P].

    [11] Krupke W F, Beach R J, Kanz V K et al. New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper)[J]. Proceedings of SPIE, 5448, 7-17(2004).

    [12] Krupke W F. DPAL: a new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths[C], 702, 367-377(2004).

    [13] Krupke W F. Diode pumped alkali lasers (DPALs): a review (rev1)[J]. Progress in Quantum Electronics, 36, 4-28(2012).

    [14] Grosek J, Naderi S, Oliker B et al. Laser simulation at the air force research laboratory[J]. Proceedings of SPIE, 1025, 10254N(2017).

    [15] Barmashenko B, Waichman K, Eliyahu-Caspi G et al. Advanced DPAL modeling[J]. Proceedings of SPIE, 12347, 1234703(2022).

    [16] Bogachev A V, Garanin S G, Dudov A M et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 42, 95-98(2012).

    [17] Zhdanov B V, Rotondaro M D, Shaffer M K et al. Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system[J]. Optics Communications, 354, 256-258(2015).

    [18] Pitz G, Stalnake D, Guild E et al. Advancements in flowing diode pumped alkali lasers[J]. Proceedings of SPIE, 9729, 972902(2016).

    [19] Yamamoto T, Yamamoto F, Endo M et al. Experimental investigation of gas flow type DPAL[J]. Proceedings of SPIE, 10254, 102540S(2017).

    [20] Wang H, Xu X, Yang Z et al. DPAL research in Changsha[J]. Proceedings of SPIE, 9255, 92551X(2015).

    [21] Zhao X F, Yang Z N, Hua W H et al. Ionization degree measurement in the gain medium of a hydrocarbon-free rubidium vapor laser operating in pulsed and CW modes[J]. Optics Express, 25, 9458-9470(2017).

    [22] Krupke W F, Beach R J, Kanz V K et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 28, 2336-2338(2003).

    [23] Beach R J, Krupke W F, Kanz V K et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling[J]. Journal of the Optical Society of America B, 21, 2151-2163(2004).

    [24] Zhdanov B, Knize R J. Diode-pumped 10 W continuous wave cesium laser[J]. Optics Letters, 32, 2167-2169(2007).

    [25] Zhdanov B V, Stooke A, Boyadjian G et al. Rubidium vapor laser pumped by two laser diode arrays[J]. Optics Letters, 33, 414-415(2008).

    [26] Zhdanov B V, Sell J, Knize R J. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electronics Letters, 44, 582-583(2008).

    [27] Zheng Y J, Niigaki M, Miyajima H et al. High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser[J]. Applied Physics Express, 2, 032501(2009).

    [28] Zhdanov B V, Shaffer M K, Knize R J. Demonstration of a diode pumped continuous wave potassium laser[J]. Proceedings of SPIE, 7915, 791506(2011).

    [29] Hostutler D A, Klennert W L. Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier[J]. Optics Express, 16, 8050-8053(2008).

    [30] Zhdanov B V, Shaffer M K, Sell J et al. Cesium vapor laser with transverse pumping by multiple laser diode arrays[J]. Optics Communications, 281, 5862-5863(2008).

    [31] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers[J]. Optics Express, 17, 14767-14770(2009).

    [32] Zweiback J, Komashko A. High-energy transversely pumped alkali vapor laser[J]. Proceedings of SPIE, 7915, 791509(2011).

    [33] Yang Z N, Wang H Y, Lu Q S et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium[J]. Journal of the Optical Society of America B, 28, 1353-1364(2011).

    [34] Li Y F, Hua W H, Li L et al. Experimental research of a chain of diode pumped rubidium amplifiers[J]. Optics Express, 23, 25906-25911(2015).

    [35] Kim H, Jeong Y, Hwang K et al. Highly efficient diode-pumped alkali-vapor amplification with near-extreme-limit gain[J]. Optics Express, 30, 25638-25646(2022).

    [36] Gourevitch A, Venus G, Smirnov V et al. Efficient pumping of Rb vapor by high-power volume Bragg diode laser[J]. Optics Letters, 32, 2611-2613(2007).

    [37] Zhdanov B V, Ehrenreich T, Knize R J. Narrowband external cavity laser diode array[J]. Electronics Letters, 43, 221-222(2007).

    [38] Podvyaznyy A, Venus G, Smirnov V et al. 250 W diode laser for low pressure Rb vapor pumping[J]. Proceedings of SPIE, 7583, 758313(2010).

    [39] Yang Z N, Wang H Y, Lu Q S et al. An 80-W laser diode array with 0.1 nm linewidth for rubidium vapor laser pumping[J]. Chinese Physics Letters, 28, 104202(2011).

    [40] Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[J]. Proceedings of SPIE, 8241, 82410Q(2012).

    [41] Hecht J. A new generation of laser weapons is born[J]. Laser Focus World, 46, 36-39, 41(2010).

    [42] Wu S S Q, Soules T F, Page R H et al. Resonance transition 795-nm rubidium laser using 3He buffer gas[J]. Optics Communications, 281, 1222-1225(2008).

    [43] Wu S S Q, Soules T F, Page R H et al. Hydrocarbon-free resonance transition 795-nm rubidium laser[J]. Optics Letters, 32, 2423-2425(2007).

    [47] Koenning T, McCormick D, Irwin D et al. DPAL pump system exceeding 3 kW at 766 nm and 30 GHz bandwidth[J]. Proceedings of SPIE, 9733, 97330E(2016).

    [48] Yacoby E, Auslender I, Waichman K et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: experimental and theoretical studies[J]. Optics Express, 26, 17814-17819(2018).

    [49] Endo M, Nagaoka H, Wani F. Diode pumped alkali laser: current status and prospects[J]. Optical and Quantum Electronics, 54, 363(2022).

    [50] Biswal R, Mishra G K, Agrawal S K et al. Studies on the design and parametric effects of a diode pump alkali (rubidium) laser[J]. Pramana, 93, 58(2019).

    [51] Tan Y N, Xu D D, Li Y M et al. 108 W diode pumped rubidium vapor laser with Brewster angle structure[C], 617-620(2022).

    [52] Han J L, Zhang J, Shan X N et al. High-power narrow-linewidth 780 nm diode laser based on external cavity feedback technology of volume Bragg grating[J]. Optik, 264, 169455(2022).

    [53] Han J L, Zhang J, Shan X N et al. Tunable, high-power, narrow-linewidth diode laser for potassium alkali metal vapor laser pumping[J]. Crystals, 12, 1675(2022).

    [54] Wang B G, Zhou L, Tan S Y et al. 71% wall-plug efficiency from 780 nm-emitting laser diode with GaAsP quantum well[J]. Optics & Laser Technology, 168, 109867(2024).

    [55] Li Z Y, Tan R Q, Huang W et al. A quasi-CW linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack[J]. Proceedings of SPIE, 9255, 925525(2015).

    [56] Li Z Y, Han G C, Tan R Q et al. Self-heated diode-pumped alkali laser with a microfabricated alkali cell[J]. Optical Engineering, 56, 106105(2017).

    [57] He L A, Zhou K, Zhang L et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 33, 091001(2021).

    [58] Qi Y, Yi H Y, Huang J J et al. Research development and technological challenge of alkali lasers with high power[J]. Laser & Optoelectronics Progress, 58, 0700003(2021).

    [59] Chen F, Pan Q K, Gao F et al. Repetition operation of A 447.3 nm blue-violet laser by intracavity frequency doubling of an LD-pumped cesium vapor laser[J]. Journal of Russian Laser Research, 38, 564-568(2017).

    [60] Chen F, Xu D D, Gao F et al. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime[J]. Optics Express, 23, 12414-12422(2015).

    [61] An G F, Yang J, Guo J W et al. Experimental study of a new kind of gas-flowing diode pumped cesium laser[J]. Proceedings of SPIE, 12310, 1231016(2022).

    [62] Yang J, An G F, Han J H et al. Theoretical study on amplified spontaneous emission (ASE) in a V-pumped thin-disk alkali laser[J]. Optics & Laser Technology, 142, 107130(2021).

    [63] Yang Z N, Wang H Y, Lu Q S et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission[J]. Optics Express, 19, 23118-23131(2011).

    [64] Waichman K, Barmashenko B D, Rosenwaks S. Three-dimensional wave optics and fluid dynamics modeling of a Rb flowing-gas diode-pumped alkali amplifier[J]. Journal of the Optical Society of America B, 40, 1212-1221(2023).

    [65] Nole J. Nanotextured optical surfaces advance laser power and reliability[J]. Laser Focus World, 50, 38-43(2014).

    [66] Readle J D, Wagner C J, Verdeyen J T et al. Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers[J]. Proceedings of SPIE, 7581, 75810K(2010).

    [67] Xu X J, Zhang H W, Wang H Y et al. Laser pumped flowing nanoparticle rare earth ion laser[P].

    [68] Han J D, Heaven M C. Gain and lasing of optically pumped metastable rare gas atoms[J]. Optics Letters, 37, 2157-2159(2012).

    [69] Han J D, Heaven M C. Gain and lasing of optically pumped metastable rare gas atoms[J]. Proceedings of SPIE, 8547, 85470Z(2012).

    [70] Heaven M C. Optically pumped rare gas lasers (conference presentation)[J]. Proceedings of SPIE, 10798, 1079806(2018).

    [71] Rawlins W T, Galbally-Kinney K L, Davis S J et al. Optically pumped microplasma rare gas laser[J]. Optics Express, 23, 4804-4813(2015).

    [72] Mikheyev P A, Chernyshov A K, Ufimtsev N I et al. Tunable diode-laser spectroscopy (TDLS) of 811.5 nm Ar line for Ar(4s[3/2]2) number density measurements in a 40 MHz RF discharge[J]. Proceedings of SPIE, 9255, 92552W(2015).

    [73] Mikheyev P A, Chernyshov A K, Ufimtsev N I et al. Pressure broadening of Ar and Kr (n+1)s[3/2]2→(n+1)p[5/2]3 transition in the parent gases and in He[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 164, 1-7(2015).

    [74] Wang R, Yang Z N, Liu Q S et al. Demonstration of a diode-pumped plasma jet-type rare gas laser[J]. Optics Letters, 47, 3279-3282(2022).

    [75] Eshel B, Perram G P. Five-level argon-helium discharge model for characterization of a diode-pumped rare-gas laser[J]. Journal of the Optical Society of America B, 35, 164-173(2017).

    [76] Xu X J, Wang R, Yang Z N. The second fusion of laser and aerospace: an inspiration for high energy lasers[J]. Opto-Electronic Advances, 6, 220113(2023).

    [77] Hong D B, Xiang B K, Wu T et al. Generation of collimated extreme ultraviolet radiation by single-photon process[J]. Optics Communications, 545, 129626(2023).

    Xiaojun Xu. Development and Challenges of High Energy Diode Pumped Alkali Lasers (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114002
    Download Citation