• Photonics Research
  • Vol. 10, Issue 7, 1669 (2022)
Yaqing Jin1、2, Ye Yang3、4, Huibo Hong1、2, Xiao Xiang1、2, Runai Quan1、2, Tao Liu1、2, Shougang Zhang1、2, Ninghua Zhu3、5、6, Ming Li3、5、6、7, and Ruifang Dong1、2、*
Author Affiliations
  • 1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 4The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610029, China
  • 5School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
  • 7e-mail: ml@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.453934 Cite this Article Set citation alerts
    Yaqing Jin, Ye Yang, Huibo Hong, Xiao Xiang, Runai Quan, Tao Liu, Shougang Zhang, Ninghua Zhu, Ming Li, Ruifang Dong. Quantum microwave photonics in radio-over-fiber systems[J]. Photonics Research, 2022, 10(7): 1669 Copy Citation Text show less
    References

    [1] C. H. Lee. Microwave Photonics(2006).

    [2] K. Xu, R. Wang, Y. Dai, F. Yin, J. Li, Y. Ji, J. Lin. Microwave photonics: radio-over-fiber links, systems, and applications. Photon. Res., 2, B54-B63(2014).

    [3] T. Kawanishi. THz and photonic seamless communications. J. Lightwave Technol., 37, 1671-1679(2019).

    [4] Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, S. Pan. Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging. Optical Fiber Communications Conference and Exposition (OFC), Th3G.5(2018).

    [5] A. Malacarne, S. Maresca, F. Scotti, B. Hussain, L. Lembo, G. Serafino, A. Bogoni, P. Ghelfi. A ultrawide-band VCSEL-based radar-over-fiber system. International Topical Meeting on Microwave Photonics (MWP), 1-4(2019).

    [6] C. Lim, A. Nirmalathas. Radio-over-fiber technology: present and future. J. Lightwave Technol., 39, 881-888(2021).

    [7] T. Yamamoto, K. R. Tamura, M. Nakazawa. 1.28  Tbit/s—70-km OTDM femtosecond-pulse transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electron. Commun. Jpn., 86, 68-79(2003).

    [8] M. van Amerongen. Quantum technologies in defence & security.

    [9] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, F. K. Wilheim. The quantum technologies roadmap: a European community view. New J. Phys., 20, 080201(2018).

    [10] M. Krelina. Quantum technology for military applications. EPJ Quantum Technol., 8, 24(2021).

    [11] C.-R. Chang, Y.-C. Lin, K.-L. Chiu, T.-W. Huang. The second quantum revolution with quantum computers. AAPPS Bull., 30, 9-22(2020).

    [12] H. Zhang, Z. Sun, R. Qi, L. Yin, G.-L. Long, J. Lu. Realization of quantum secure direct communication over 100  km fiber with time-bin and phase quantum states. Light Sci. Appl., 11, 83(2022).

    [13] C.-Y. Gao, P.-L. Guo, B.-C. Ren. Efficient quantum secure direct communication with complete Bell-state measurement. Quantum Eng., 3, e83(2021).

    [14] T. B. Pittman, Y. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).

    [15] D. Strekalov, A. V. Sergienko, D. N. Klyshko, Y. Shih. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett., 74, 3600-3603(1995).

    [16] J. H. Shapiro, R. W. Boyd. Response to ‘The physics of ghost imaging—nonlocal interference or local intensity fluctuation correlation’?. Quantum Inf. Process., 11, 1003-1011(2012).

    [17] B. E. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich. Duality between partial coherence and partial entanglement. Phys. Rev. A, 62, 043816(2000).

    [18] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Role of entanglement in two-photon imaging. Phys. Rev. Lett., 87, 123602(2001).

    [19] A. F. Abouraddy, B. E. Saleh, A. V. Sergienko, M. C. Teich. Entangled-photon Fourier optics. J. Opt. Soc. Am. B, 19, 1174-1184(2002).

    [20] R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell. Quantum and classical coincidence imaging. Phys. Rev. Lett., 92, 033601(2004).

    [21] M. N. O’Sullivan, K. W. C. Chan, R. W. Boyd. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. Phys. Rev. A, 82, 053803(2010).

    [22] M. Malik, O. S. Magaña-Loaiza, R. W. Boyd. Quantum-secured imaging. Appl. Phys. Lett., 101, 241103(2012).

    [23] E. Lopaeva, I. R. Berchera, I. P. Degiovanni, S. Olivares, G. Brida, M. Genovese. Experimental realization of quantum illumination. Phys. Rev. Lett., 110, 153603(2013).

    [24] N. Samantaray, I. Ruo-Berchera, A. Meda, M. Genovese. Realization of the first sub-shot-noise wide field microscope. Light Sci. Appl., 6, e17005(2017).

    [25] R. Quan, Y. Zhai, M. Wang, F. Hou, S. Wang, X. Xiang, T. Liu, S. Zhang, R. Dong. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons. Sci. Rep., 6, 30453(2016).

    [26] F. Hou, R. Quan, R. Dong, X. Xiang, B. Li, T. Liu, X. Yang, H. Li, L. You, Z. Wang. Fiber-optic two-way quantum time transfer with frequency-entangled pulses. Phys. Rev. A, 100, 023849(2019).

    [27] R. Quan, R. Dong, Y. Zhai, F. Hou, X. Xiang, H. Zhou, C. Lv, Z. Wang, L. You, T. Liu, S. Zhang. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level. Opt. Lett., 44, 614-617(2019).

    [28] Y. Liu, R. Quan, X. Xiang, H. Hong, M. Cao, T. Liu, R. Dong, S. Zhang. Quantum clock synchronization over 20-km multiple segmented fibers with frequency-correlated photon pairs and HOM interference. Appl. Phys. Lett., 119, 144003(2021).

    [29] J. Nunn, L. Wright, C. Söller, L. Zhang, I. A. Walmsley, B. J. Smith. Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express, 21, 15959-15973(2013).

    [30] J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner. Orthogonal spectral coding of entangled photons. Phys. Rev. Lett., 112, 133602(2014).

    [31] L.-C. Kwek, L. Cao, W. Luo, Y. Wang, S. Sun, X. Wang, A. Q. Liu. Chip-based quantum key distribution. AAPPS Bull., 31, 15(2021).

    [32] G.-Z. Tang, C.-Y. Li, M. Wang. Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quantum Eng., 3, e79(2021).

    [33] A. Yabushita, T. Kobayashi. Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A, 69, 013806(2004).

    [34] R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. O’Brien, H. Cable, J. C. F. Matthews. Absorption spectroscopy at the ultimate quantum limit from single-photon states. New J. Phys., 19, 023013(2017).

    [35] V. Averchenko, D. Sych, G. Schunk, U. Vogl, C. Marquardt, G. Leuchs. Temporal shaping of single photons enabled by entanglement. Phys. Rev. A, 96, 043822(2017).

    [36] V. Averchenko, D. Sych, C. Marquardt, G. Leuchs. Efficient generation of temporally shaped photons using nonlocal spectral filtering. Phys. Rev. A, 101, 013808(2020).

    [37] Y. Yang, Y. Jin, X. Xiang, T. Hao, W. Li, T. Liu, S. Zhang, N. Zhu, R. Dong, M. Li. Single-photon microwave photonics. Sci. Bull., 67, 700-706(2022).

    [38] A. Yariv, P. Yeh. Chromatic dispersion and polarization mode dispersion in fibers. Photonics: Optical Electronics in Modern Communications(2007).

    [39] A. Valencia, M. V. Chekhova, A. Trifonov, Y. Shih. Entangled two-photon wave packet in a dispersive medium. Phys. Rev. Lett., 88, 183601(2002).

    [40] Y. Zhang, F. Hou, T. Liu, X.-F. Zhang, S.-G. Zhang, R. Dong. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide. Acta Phys. Sin., 67, 144204(2018).

    [41] X. Xiang, R. Dong, R. Quan, Y. Jin, Y. Yang, M. Li, T. Liu, S. Zhang. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. Opt. Lett., 45, 2993-2996(2020).

    [42] J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, X. Xie. Improving the timing jitter of a superconducting nanowire single-photon detection system. Appl. Opt., 56, 2195-2200(2017).

    [43] M. Frigo, S. G. Johnson. FFTW: An adaptive software architecture for the FFT. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1381-1384(1998).

    Yaqing Jin, Ye Yang, Huibo Hong, Xiao Xiang, Runai Quan, Tao Liu, Shougang Zhang, Ninghua Zhu, Ming Li, Ruifang Dong. Quantum microwave photonics in radio-over-fiber systems[J]. Photonics Research, 2022, 10(7): 1669
    Download Citation