• Photonics Research
  • Vol. 6, Issue 4, A10 (2018)
Li Ge1、2、*
Author Affiliations
  • 1Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA
  • 2The Graduate Center, CUNY, New York, New York 10016, USA (li.ge@csi.cuny.edu)
  • show less
    DOI: 10.1364/PRJ.6.000A10 Cite this Article Set citation alerts
    Li Ge. Non-Hermitian lattices with a flat band and polynomial power increase [Invited][J]. Photonics Research, 2018, 6(4): A10 Copy Citation Text show less
    References

    [1] V. Apaja, M. Hyrkäs, M. Manninen. Flat bands, Dirac cones, and atom dynamics in an optical lattice. Phys. Rev. A, 82, 041402(2010).

    [2] M. Hyrkäs, V. Apaja, M. Manninen. Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices. Phys. Rev. A, 87, 023614(2013).

    [3] M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, A. Szameit. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics, 7, 153-158(2013).

    [4] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, M. I. Molina. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett., 114, 245503(2015).

    [5] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, R. R. Thomson. Observation of a Localized Flat-band state in a photonic Lieb lattice. Phys. Rev. Lett., 114, 245504(2015).

    [6] M. Biondi, E. P. L. van Nieuwenburg, G. Blatter, S. D. Huber, S. Schmidt. Incompressible polaritons in a flat band. Phys. Rev. Lett., 115, 143601(2015).

    [7] C. L. Kane, E. J. Mele. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett., 78, 1932-1935(1997).

    [8] F. Guinea, M. I. Katsnelson, A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys., 6, 30-33(2010).

    [9] A. Simon. Supraleitung und Chemie. Angew. Chem., 109, 1873-1891(1997).

    [10] S. Deng, A. Simon, J. Köhler. Supraleitung und chemische Bindung in Quecksilber. Angew. Chem., 110, 664-666(1998).

    [11] S. Deng, A. Simon, J. Köhler. The origin of a flat band. J. Solid State Chem., 176, 412-416(2003).

    [12] M. Imada, M. Kohno. Superconductivity from flat dispersion designed in doped Mott insulators. Phys. Rev. Lett., 84, 143-146(2000).

    [13] E. Tang, J.-W. Mei, X.-G. Wen. High-temperature fractional quantum Hall states. Phys. Rev. Lett., 106, 236802(2011).

    [14] T. Neupert, L. Santos, C. Chamon, C. Mudry. Fractional quantum Hall states at zero Magnetic field. Phys. Rev. Lett., 106, 236804(2011).

    [15] S. Yang, Z.-C. Gu, K. Sun, S. Das Sarma. Topological flat band models with arbitrary Chern numbers. Phys. Rev. B, 86, 241112(2012).

    [16] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, A. Amo. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett., 112, 116402(2014).

    [17] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, J. Bloch. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 116, 066402(2016).

    [18] M. Goda, S. Nishino, H. Matsuda. Inverse Anderson transition caused by flatbands. Phys. Rev. Lett., 96, 126401(2006).

    [19] J. T. Chalker, T. S. Pickles, P. Shukla. Anderson localization in tight-binding models with flat bands. Phys. Rev. B, 82, 104209(2010).

    [20] J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, S. Flach. Flatbands under correlated perturbations. Phys. Rev. Lett., 113, 236403(2014).

    [21] D. Leykam, S. Flach, O. Bahat-Treidel, A. S. Desyatnikov. Flat band states: disorder and nonlinearity. Phys. Rev. B, 88, 224203(2013).

    [22] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, A. S. Desyatnikov. Detangling flat bands into Fano lattices. Europhys. Lett., 105, 30001(2014).

    [23] L. Ge. Anomalous minimum and scaling behavior of localization length near an isolated flat band. Ann. Phys., 527, 201600182(2017).

    [24] S. Miyahara, K. Kubo, H. Ono, Y. Shimomura, N. Furukawa. Flat-bands on partial line graphs Systematic method for generating flat-band lattice structures. J. Phys. Soc. Jpn., 74, 1918-1921(2005).

    [25] L. Ge. Parity-time symmetry in a flat-band system. Phys. Rev. A, 92, 052103(2015).

    [26] G.-W. Chern, A. Saxena. PT-symmetric phase in kagome-based photonic lattices. Opt. Lett., 40, 5806-5809(2015).

    [27] M. I. Molina. Flatbands and PT-symmetry in quasi-one-dimensional lattices. Phys. Rev. A, 92, 063813(2015).

    [28] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics, 11, 752-762(2017).

    [29] A. V. Yulin, V. V. Konotop. Conservative and PT-symmetric compactons in waveguide networks. Opt. Lett., 38, 4880-4883(2013).

    [30] H. Ramezani. Non-hermiticity-induced flat band. Phys. Rev. A, 96, 011802(2017).

    [31] D. Leykam, S. Flach, Y. D. Chong. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B, 96, 064305(2017).

    [32] B. Qi, L. Zhang, L. Ge. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 120, 093901(2017).

    [33] G. Demange, E.-M. Graefe. Signatures of three coalescing eigenfunctions. J. Phys. A, 45, 025303(2012).

    [34] L. Ge, H. E. Türeci. Antisymmetric PT-photonic structures with balanced positive- and negative-index materials. Phys. Rev. A, 88, 053810(2013).

    [35] S. Malzard, C. Poli, H. Schomerus. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett., 115, 200402(2015).

    [36] L. Ge. Symmetry-protected zero-mode laser with a tunable spatial profile. Phys. Rev. A, 95, 023812(2017).

    [37] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [38] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Hua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).

    [39] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [40] S. Klaiman, U. Gunther, N. Moiseyev. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett., 101, 080402(2008).

    [41] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, D. N. Christodoulides. Optical solitons in PT periodic potentials. Phys. Rev. Lett., 100, 030402(2008).

    [42] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [43] L. Ge, Y. D. Chong, A. D. Stone. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A, 85, 023802(2012).

    [44] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [45] L. Ge, A. D. Stone. Parity-time symmetry breaking beyond one dimension: the role of degeneracy. Phys. Rev. X, 4, 031011(2014).

    [46] J. Okolowicz, M. Ploszajczak, I. Rotter. Dynamics of quantum systems embedded in a continuum. Phys. Rep., 374, 271-383(2003).

    [47] W. D. Heiss. Exceptional points of non-Hermitian operators. J. Phys. A, 37, 2455-2464(2004).

    [48] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [49] N. Moiseyev. Non-Hermitian Quantum Mechanics(2011).

    [50] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).

    [51] J. Wiersig, S.-W. Kim, M. Hentschel. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A, 78, 053809(2008).

    [52] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, K. An. Observation of an xceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [53] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, S. Rotter. Pump-induced exceptional points in lasers. Phys. Rev. Lett., 108, 173901(2012).

    [54] R. El-Ganainy, M. Khajavikhan, L. Ge. Exceptional points and lasing self-termination in photonic molecules. Phys. Rev. A, 90, 013802(2014).

    [55] P. D. Lax. Linear Algebra and its Applications(2007).

    [56] S. Longhi, G. Della Valle. Optical lattices with exceptional points in the continuum. Phys. Rev. A, 89, 053132(2014).

    [57] Z. Gong, S. Higashikawa, M. Ueda. Zeno Hall effect. Phys. Rev. Lett., 118, 200401(2017).

    [58] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [59] W. Chen, S. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    CLP Journals

    [1] Shi-Qiang Xia, Li-Qin Tang, Shi-Qi Xia, Ji-Na Ma, Wen-Chao Yan, Dao-Hong Song, Yi Hu, Jing-Jun Xu, Zhi-Gang Chen. Novel phenomena in flatband photonic structures: from localized states to real-space topology[J]. Acta Physica Sinica, 2020, 69(15): 154207-1

    Li Ge. Non-Hermitian lattices with a flat band and polynomial power increase [Invited][J]. Photonics Research, 2018, 6(4): A10
    Download Citation