• Photonics Research
  • Vol. 7, Issue 8, 875 (2019)
Yingfei Pang1,2,3, Axiu Cao1, Jiazhou Wang1, Hui Pang1..., Wei Yan1, Xiangdong Wu2, Lifang Shi1,4,* and Qiling Deng1,5,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4e-mail: shilifang@ioe.ac.cn
  • 5e-mail: dengqiling@ioe.ac.cn
  • show less
    DOI: 10.1364/PRJ.7.000875 Cite this Article Set citation alerts
    Yingfei Pang, Axiu Cao, Jiazhou Wang, Hui Pang, Wei Yan, Xiangdong Wu, Lifang Shi, Qiling Deng, "Design and experimental verification of a monolithic complete-light modulator based on birefringent materials," Photonics Res. 7, 875 (2019) Copy Citation Text show less
    References

    [1] J. R. Fontana, R. H. Pantell. A high-energy, laser accelerator for electrons using the inverse Cherenkov effect. J. Appl. Phys., 54, 4285-4288(1983).

    [2] R. D. Romea, W. D. Kimura. Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing. Phys. Rev. D, 42, 1807-1818(1990).

    [3] A. Achterberg, Y. A. Gallant, J. G. Kirk, A. W. Guthmann. Particle acceleration by ultra relativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc., 328, 393-408(2001).

    [4] C. Varin, M. Piché. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams. Appl. Phys. B, 74, s83-s88(2002).

    [5] F. A. Aharonian, A. G. Akhperjanian, K. M. Aye, A. R. Bazer-Bachi, M. Beilicke, W. Benbow, D. Berge, P. Berghaus, K. Bernlöhr, O. Bolz, C. Boisson, C. Borgmeier, F. Breitling, A. M. Brown, J. Bussons Gordo, P. M. Chadwick, V. R. Chitnis, L. M. Chounet, R. Cornils, L. Costamante, B. Degrange, A. Djannati-Ataï, L. O’C. Drury, T. Ergin, P. Espigat, F. Feinstein, P. Fleury, G. Fontaine, S. Funk, Y. A. Gallant, B. Giebels, S. Gillessen, P. Goret, J. Guy, C. Hadjichristidis, M. Hauser, G. Heinzelmann, G. Henri, G. Hermann, J. A. Hinton, W. Hofmann, M. Holleran, D. Horns, O. C. de Jager, I. Jung, B. Khélifi, A. Konopelko, I. J. Latham, R. Le Gallou, M. Lemoine, A. Lemière, N. Leroy, T. Lohse, A. Marcowith, C. Masterson, T. J. L. McComb, M. de Naurois, S. J. Nolan, A. Noutsos, K. J. Orford, J. L. Osborne, M. Ouchri, M. Panter, G. Pelletier, S. Pita, M. Pohl, G. Pühlhofer, M. Punch, B. C. Raubenheimer, M. Raue, J. Raux, S. M. Rayner, I. Redondo, A. Reimer, O. Reimer, J. Ripken, M. Rivoal, L. Rob, L. Rolland, G. Rowell, V. Sahakian, L. Saugé, S. Schlenker, R. Schlickeiser, C. Schuster, U. Schwanke, M. Siewert, H. Sol, R. Steenkamp, C. Stegmann, J.-P. Tavernet, C. G. Théoret, M. Tluczykont, D. J. van der Walt, G. Vasileiadis, P. Vincent, B. Visser, H. J. Völk, S. J. Wagner. High-energy particle acceleration in the shell of a supernova remnant. Nature, 432, 75-77(2004).

    [6] C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett., 106, 123901(2011).

    [7] K. Lou, S. X. Qian, Z. C. Ren, C. Tu, Y. Li, H. T. Wang. Femtosecond laser processing by using patterned vector optical fields. Sci. Rep., 3, 2281(2013).

    [8] A. Chakraborty, B. Das, G. Sanyal. Beam shaping using nonlinear phase distribution in a uniformly spaced array. IEEE. T. Antennas Propag., 30, 1031-1034(1982).

    [9] J. S. Liu, M. R. Taghizadeh. Iterative algorithm for the design of diffractive phase elements for laser beam shaping. Opt. Lett., 27, 1463-1465(2002).

    [10] Z. Sun, H. K. Kim. Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl. Phys. Lett., 85, 642-644(2004).

    [11] D. L. Shealy, J. A. Hoffnagle. Beam shaping profiles and propagation. Proc. SPIE, 5876, 58760D(2005).

    [12] J. S. Liu, A. J. Caley, M. R. Taghizadeh. Diffractive optical elements for beam shaping of monochromatic spatially incoherent light. Appl. Opt., 45, 8440-8447(2006).

    [13] H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics, 2, 501-505(2008).

    [14] H. Ma, P. Zhou, X. Wang, Y. Ma, F. Xi, X. Xu, Z. Liu. Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators. Opt. Express, 18, 8251-8260(2010).

    [15] J. Wang, L. Liu, A. Cao, H. Pang, C. Xu, Q. Mu, J. Chen, L. Shi, Q. Deng. Generation of color images by utilizing a single composite diffractive optical element. Micromachines, 9, 508(2018).

    [16] T. Ito, K. Okano. Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Opt. Express, 12, 4320-4325(2004).

    [17] T. Shimobaba, T. Takahashi, N. Masuda, T. Ito. Numerical study of color holographic projection using space-division method. Opt. Express, 19, 10287-10292(2011).

    [18] M. Makowski, M. Sypek, A. Kolodziejczyk. Colorful reconstructions from a thin multi-plane phase hologram. Opt. Express, 16, 11618-11623(2008).

    [19] M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, A. Kolodziejczyk. Experimental evaluation of a full-color compact lensless holographic display. Opt. Express, 17, 20840-20846(2009).

    [20] M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Opt. Eng., 44, 125805(2005).

    [21] R. G. Dorsch, A. W. Lohmann, S. Sinzinger. Fresnel ping-pong algorithm for two-plane computer-generated hologram display. Appl. Opt., 33, 869-875(1994).

    [22] M. Sypek. Light propagation in the Fresnel region. New numerical approach. Opt. Commun., 116, 43-48(1995).

    [23] M. Makowski. Iterative design of multiplane holograms: experiments and applications. Opt. Eng., 46, 045802(2007).

    [24] M. Sypek, C. Prokopowicz, M. Górecki. Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation. Opt. Eng., 42, 3158-3164(2003).

    [25] D. B. Ruffner, D. G. Grier. Optical forces and torques in nonuniform beams of light. Phys. Rev. Lett., 108, 173602(2012).

    [26] M. I. Marqués. Beam configuration proposal to verify that scattering forces come from the orbital part of the Poynting vector. Opt. Lett., 39, 5122-5125(2014).

    [27] C. J. R. Sheppard, A. Choudhury. Annular pupils, radial polarization and superresolution. Appl. Opt., 43, 4322-4327(2004).

    [28] S. Zhou, S. Wang, J. Chen, G. Rui, Q. Zhan. Creation of radially polarized optical fields with multiple controllable parameters using a vectorial optical field generator. Photon. Res., 4, B35-B39(2016).

    [29] J. J. Hao, Z. L. Yu, Z. Z. Chen, H. Chen, J. P. Ding. Shaping of focal field with controllable amplitude, phase, and polarization. Chin. Opt. Lett., 12, 090501(2014).

    [30] G. Rui, J. Chen, X. Wang, B. Gu, Y. Cui, Q. Zhan. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields. Opt. Express, 24, 23667-23676(2016).

    [31] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807-819(2013).

    [32] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [33] J. A. Davis, G. H. Evans, I. Moreno. Polarization-multiplexed diffractive optical elements with liquid-crystal displays. Appl. Opt., 44, 4049-4052(2005).

    [34] M. Plewicki, S. M. Weber, F. Weise, A. Lindinger. Independent control over the amplitude, phase, and polarization of femtosecond pulses. Appl. Phys. B, 86, 259-263(2007).

    [35] M. Plewicki, F. Weise, S. M. Weber, A. Lindinger. Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer. Appl. Opt., 45, 8354-8359(2006).

    [36] I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, D. Sand. Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express, 20, 364-376(2012).

    [37] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [38] Z. Chen, T. Zeng, B. Qian, J. Ding. Complete shaping of optical vector beams. Opt. Express, 23, 17701-17710(2015).

    [39] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 6, 228-233(2018).

    [40] S. Wang, D. C. Abeysinghe, Q. Zhan. Generation of vectorial optical fields with slot-antenna-based metasurface. Opt. Lett., 40, 4711-4714(2015).

    [41] J. Wang, A. Cao, H. Pang, M. Zhang, G. Wang, J. Chen, L. Shi, Q. Deng, S. Song. Vector optical field generation based on birefringent phase plate. Opt. Express., 25, 12531-12539(2017).

    [42] S. Tao, W. Wu. Beam shaping of complex amplitude with separate constraints on the output beam. Opt. Express, 23, 1052-1062(2015).

    [43] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 1-6(1972).

    [44] J. S. Liu, A. J. Caley, M. R. Taghizadeh. Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms. Opt. Commun., 267, 347-355(2006).

    Yingfei Pang, Axiu Cao, Jiazhou Wang, Hui Pang, Wei Yan, Xiangdong Wu, Lifang Shi, Qiling Deng, "Design and experimental verification of a monolithic complete-light modulator based on birefringent materials," Photonics Res. 7, 875 (2019)
    Download Citation