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This paper presents a method to design a monolithic complete-light modulator (MCLM) that fully controls the
amplitude, phase, and polarization of incident light. The MCLM is made of birefringent materials that provide
different refractive indices to orthogonal eigen-polarizations, the ordinary o and extraordinary e states. We pro-
pose an optimization method to calculate the two relief depth distributions for the two eigen-polarizations. Also, a
merging algorithm is proposed to combine the two relief depth distributions into one. The corresponding sim-
ulations were carried out in this work and the desired light distribution, including information on amplitude,
phase, and four polarization states, was obtained when a laser beam passed through a 16-depth-level micro-
structure whose feature size is 8 μm. The structure was fabricated by common photolithography. An experimental
optical system was also set up to test the optical effects and performances of the MCLM. The experimental
performance of the MCLM agrees with the simulation results, which verifies the validity of the algorithms
we propose in this paper. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000875

1. INTRODUCTION

A light wave contains multi-dimensional parameters: ampli-
tude, phase, and polarization. Optical modulation technologies
can be used to modulate these parameters to obtain desired
optical effects, which have numerous practical applications,
such as particle acceleration [1–5], laser fabrication [6,7], beam
shaping [8–14], and holographic projection [15–24]. At
present, most light field control techniques realize only partial
control of the parameters of the incident light field. However,
many experts and scholars have found that there are potential
applications for a complete light control technique that can
simultaneously control the amplitude, phase, and polarization
of incident beams. For example, this technique can be used to
structure the profiles of vector fields for special purposes, such
as enabling a light beam to exert force and torque on illumi-
nated objects [25,26]. The most attractive aspect of this tech-
nique is that it can be used to enhance the longitudinal
component field [27] to obtain an optical needle field [28]
or focus field [29], making it useful for particle capture and
particle manipulation [30–32].

Davis et al. [33] designed polarization-multiplexed
diffractive optical elements (DOEs) by using two cascaded

liquid-crystal displays (LCDs). The first LCD encoded the
two multiplexed phase-only DOEs. The second LCD acted
as a pixelated polarization rotator to change the polarization
state for each of these two DOEs. This approach was able
to fully control all the parameters of the spatial distributions
of an optical field. However, its optical system is difficult to
align precisely. Plewicki et al. [34,35] proposed a method that
can independently manipulate over the major axis orientation
and the axis ratio of the polarization ellipse by integrating a
4 − f shaper setup in both arms of a Mach–Zehnder interfer-
ometer and rotating the polarization by 90° in one of the arms
before overlaying the beams. Moreno et al. [36] used a single
transmissive spatial light modulator (SLM) to generate complex
light fields. They divided an SLM into two regions, using the
dual modulation of two transmissive subsystems to completely
control the incident beam. Han et al. [37] proposed a cascaded
modulation method that divided two reflective SLMs into
four regions to form four reflective subsystems. This method
generated various optical fields containing amplitude, phase,
and polarization modulations. Chen et al. [38] and Liu et al.
[39] designed different methods to generate two orthogonal
complex fields. These two complex amplitude distributions
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generated desired light fields by coaxial superposition. The for-
mer used a phase-only SLM based on a 4 − f system, while the
latter divided a phase-type SLM into two regions, which respec-
tively control the ordinary (o) ray and extraordinary (e) ray of
the incident light. All of the above methods were based on
SLMs to achieve full control of all parameters of incident light.
It has to be acknowledged that these methods have great
flexibility in light field modulation, but have the common
disadvantages of complex systems and relatively high cost.
Wang et al. [40] obtained a high-purity optical needle field
by fabricating slot antennas on a metasurface structure. Each
slot antenna can be regarded as a linear polarizer to fully control
the light field. The system is greatly simplified, but in order to
obtain the metasurface structure, the manufacturing cost is
extremely high.

Our group previously designed a polarization multiplexing
phase slice [41], which realized polarization multiplexing im-
aging on a single yttrium vanadate substrate (YVO4). In this
manuscript, we report further developments of the modulation
technique of a monolithic complete-light modulator (MCLM)
and the design method for an MCLM that can yield a complex
light field containing amplitude, phase, and polarization modu-
lation. All parameters of the incident beam can be modulated
without any other optical element except one MCLM. The sys-
tem is simple and stable with little external interference and
relatively low fabrication cost. This manuscript is organized
with six sections. After this introduction, Section 2 demon-
strates the principle of how to design the MCLM. Section 3
describes the design process about calculating the relief distri-
bution of the MCLM. Section 4 shows the simulation result.
In Section 5, we show the experimental results, which largely
coincide with the simulation results. Section 6 is the summary.

2. PRINCIPLE

The design process of an MCLM includes the following three
major steps. First, the desired light field E�x, y� containing
amplitude, phase, and polarization information can be decom-
posed into two orthogonal components of o-ray and e-ray light
fields Eo�x, y� and Ee�x, y� according to the Jones calculus.
Second, a modified Gerchberg–Saxton (GS) algorithm [42]
with both amplitude and phase limits is profiled to obtain
two pure phase distributions ϕo�x 0, y 0� and ϕe�x 0, y 0�, which
can be used to generate the phases of Eo�x, y� and Ee�x, y�.
Third, by adopting point-by-point calculation, we can obtain
a single relief depth distribution h�x 0, y 0� of birefringent
material, which can obtain two phase delay distributions
ϕ 0
o�x 0, y 0� and ϕ 0

e�x 0, y 0� of o- and e-ray light propagating in
the birefringent material. The aim is to find an appropriate
depth distribution h�x 0, y 0� of birefringent material that min-
imizes the error between ϕ 0

i�x 0, y 0� and ϕi�x 0, y 0� (i � o, e).
After searching for a suitable h�x 0, y 0�, the relief depth distribu-
tion of the MCLM can be obtained by quantizing h�x 0, y 0� to
16 depth levels.

When the incident light containing equal o-ray and e-ray
light (i.e., linearly polarized light with a polarization orientation
of 45° relative to the o-ray and e-ray axes of a birefringent
material) passes through the MCLM, the o-ray and e-ray
can simultaneously be modulated to generate Eo�x, y� and

Ee�x, y�. The vector superposition of the two components gen-
erates the desired light field distribution E�x, y�.

3. DESIGN PROCESS

In the design process, the following parts should be considered
carefully to obtain the depth distribution h�x 0, y 0�, which in-
cludes how to decompose the desired optical field into compo-
nents of two orthogonally polarized complex light fields of
proper amplitudes, how to retrieve two pure phase distributions
of the two light fields by the modified GS algorithm, and how
to obtain the relief depth distribution of birefringent material
that can satisfy two phase distributions. The above three parts
will be described in detail below.

A. Decomposition of the Desired Light Field
According to the Jones calculus, the desired light field contain-
ing complex information can be expressed as

E�x, y� � A�x, y� exp�iφ�x, y��
�
cos�θ�x, y��
sin�θ�x, y�� exp�iδ�x, y�� : (1)

Equation (1) can be divided into two equations:�
Eo�x, y� � A�x, y� cos�θ�x, y�� exp�iφ�x, y��
Ee�x, y� � A�x, y� sin�θ�x, y�� exp�iφ�x, y�� exp�iδ�x, y�� :

(2)

E�x, y� in Eq. (1) stands for the desired light field, which can be
regarded as the vector superposition of two orthogonal compo-
nents of complex light fields Eo�x, y� and Ee�x, y� in Eq. (2).
φ�x, y� and δ�x, y� are the common phase and phase difference
of Eo�x, y� and Ee�x, y�, respectively. δ�x, y� determines the
polarization state distribution of desired field, and θ�x, y�
represents the polarization orientation.

An example of a desired light field of four regions containing
amplitude, phase, and polarization is shown in Fig. 1.

Fig. 1. Example of a light field containing four regions as divided by
the purple dotted lines. Distributions of the light field parameters are:
(a) amplitude A�x, y�, (b) polarization θ�x, y�, (c) common phase
φ�x, y�, (d) phase differience δ�x, y�, (e) amplitude Ao�x, y� of
Eo�x, y�, (f ) amplitude Ae�x, y� of Ee�x, y�, (g) phase φo�x, y� of
Eo�x, y�, and (h) phase φe�x, y� of Ee�x, y�.
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Figure 1(a) shows A�x, y�, which contains patterns of differ-
ent amplitude distributions of A, B, C, and D in different
regions. Figure 1(b) shows that the polarization state distribu-
tions in four regions are linearly polarized, and the polarization
orientation θ�x, y� is indicated by four blue two-way arrows
oriented at 0°, 45°, 90°, and 135°, respectively. Figure 1(c) rep-
resents the common phase φ�x, y�, and Fig. 1(d) shows the
phase difference δ�x, y�.

In this example, the polarization state is linearly polarized, with
θ�x, y� ∈ �0, π∕2� in Fig. 1(b), the phase difference δ�x, y� �
2kπ �k � 0, 1, 2,…� in Fig. 1(d); if θ�x,y�∈ �π∕2,π� in
Fig. 1(b), the phase difference δ�x, y� � �2k � 1�π �k �
0, 1, 2,…� in Fig. 1(d); if θ�x, y� � 0, π∕2 or π in Fig. 1(b),
the phase difference δ�x, y� � kπ �k � 0, 1, 2,…� in Fig. 1(d).
Substituting A�x, y�, φ�x, y�, δ�x, y�, and θ�x, y� into Eq. (2), the
two components Eo�x, y� and Ee�x, y� can be obtained as�

Eo�x, y� � Ao�x, y� exp�iφo�x, y��
Ee�x, y� � Ae�x, y� exp�iφe�x, y�� : (3)

By comparing Eqs. (2) and (3), we can obtain the amplitude and
phase distributions of Eo�x, y� and Ee�x, y�, as shown in
Figs. 1(e)–1(h).

Figures 1(e) and 1(f ) represent the amplitude distributions
Ao�x, y� and Ae�x, y� of Eo�x, y� and Ee�x, y�, respectively.
Figure 1(e) shows that the amplitude of regions A, B, C,
and D is equal to 1,

ffiffiffi
2

p
∕2, 0, and

ffiffiffi
2

p
∕2, respectively.

Figure 1(f ) shows that the amplitude of regions A, B, C,
and D is equal to 0,

ffiffiffi
2

p
∕2, 1, and

ffiffiffi
2

p
∕2, respectively.

Figures 1(g) and 1(h) represent the phase distributions
φo�x, y� and φe�x, y� of Eo�x, y� and Ee�x, y�, respectively.
As can be seen from Eq. (2), the phase φo�x, y� of Eo�x, y�
is equal to the common phase φ�x, y�. Meanwhile, the phase
φe�x, y� of Ee�x, y� is equal to φ�x, y� � δ�x, y�.
B. Calculation of Phase Distributions
The common GS algorithm and most of the modified GS al-
gorithm [43,44] can be used to calculate the desired light field
only with amplitude distribution, while the phase distribution
cannot be considered. However, in this paper, since Eo�x, y�
and Ee�x, y� contain determinate amplitude distributions
and phase distributions, it is necessary to optimize the calcu-
lation by using the modified GS algorithm for both amplitude
and phase limitations. In the iterative process, the output plane
is divided into the signal domain and the noise domain, as
shown in Fig. 2. To avoid the influence of the center zero-order

on the experimental results, the signal domain is placed at a
position offset from the center of the output plane.

Taking Ee�x, y� as an example, the specific steps can be de-
scribed as follows. The initial phase distribution of design phase
plane is random value from 0 to 2π, denoted as ϕ�0�

e �x 0, y 0�.
The process of modified GS algorithm is shown in Fig. 2.

First, the amplitude of the design phase plane is replaced by 1
to obtain complex amplitude U � exp�iϕ�k−1�

e �x 0, y 0��, k �
1, 2, 3,…. Then U propagates from the design phase plane
to the output plane, which generates a failed complex ampli-
tude distribution E1�x, y�. E 0

e�x, y� is the modified Fresnel-
domain constraint function to correct the failed results, which
can be expressed as

E 0
e�x, y� �

�
rAe�x, y� exp�iφe�x, y��, �x, y� ∈ S
E1�x, y�, �x, y� ∈ N , (4)

where Ae�x, y� and φe�x, y� are the amplitude distribution and
phase distribution of Ee�x, y�, respectively. r is the weight fac-
tor. S and N refer to the signal domain and the noise domain,
respectively. Second, when the modified function propagates
back to the design phase plane, the complex amplitude distri-
bution U 0�x 0, y 0� will be generated. To obtain a phase-only dis-
tribution, we retain only the phase distribution ϕ�k−1�

e �x 0, y 0�,
while the amplitude jU 0�x 0, y 0�j is eliminated. Finally,
ϕ�k−1�
e �x 0, y 0� becomes the phase distribution at the beginning

of the next iteration of the design phase plane.
During the iteration, we need to determine whether the

failed result E1�x, y� meets the error requirement, which can be
represented by the root mean square error, as shown in Eq. (5).
If so, the iteration is terminated and the pure phase distribution
ϕ�k−1�
e �x 0, y 0� [i.e., ϕe�x 0, y 0�] becomes the output of the itera-

tion; otherwise, the iteration continues. Meanwhile, ϕo�x 0, y 0�
can also be obtained by using the modified GS algorithm.

RMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP �jE1�x, y�j − jEd �x, y�j�2

�jEd �x, y�j�2

s
, �x, y� ∈ S,

(5)

where RMSE stands for the root mean square error of ampli-
tude between the failed result E1 and the desired result Ed .

Adopting the proposed algorithm, ϕo�x 0, y 0� and ϕe�x 0, y 0�
can be calculated. Then, ϕo�x 0, y 0� and ϕe�x 0, y 0� will be used to
search the relief depth distribution of the MCLM.

C. Search of Relief Depth Distribution
According to the refractive indices no and ne of the o ray and e
ray propagating in birefringent material, the relief depth distri-
butions ho�x 0, y 0� and he�x 0, y 0� can be calculated by

ϕ�x, y� � 2π�n − 1�
λ

h�x, y�, (6)

where n is the refractive index of a light wave whose wavelength
is λ, and h�x, y� is the relief depth of the DOE.

However, ho�x 0, y 0� and he�x 0, y 0� have entirely different dis-
tributions. To simultaneously modulate o and e light by a sin-
gle MCLM to obtain the two orthogonal components of the
desired light field, it is necessary to optimize the two different
relief depth distributions to a unique relief depth distribu-
tion h�x 0, y 0�.

Fig. 2. Flow chart of the modified GS algorithm with both ampli-
tude and phase limits.

Research Article Vol. 7, No. 8 / August 2019 / Photonics Research 877



The calculation process is as follows. Suppose the array size
of the MCLM is M ×M , and the relief depth of the pixel
�x 0, y 0� on the MCLM is h�x 0, y 0�, where x 0, y 0 ∈ �1,M �.
Utilizing Eq. (6), the phase delays of h�x 0, y 0� for the o and
e light can be calculated as ϕ 0

o�x 0, y 0� and ϕ 0
e�x 0, y 0�.

Therefore, the phase errors between ϕ 0
i�x 0, y 0� and ϕi�x 0, y 0�

(i � o, e) can be calculated as Δϕo and Δϕe . However, as
we all know, due to the periodicity of the phase, it is difficult
to calculate the actual phase error. Therefore, Δf �k� (k � 1, 2)
is used here to characterize Δϕi:�
Δf �1��x 0,y 0��modλ�h�x 0,y 0�× �no −1��−ho�x 0,y 0�× �no −1�
Δf �2��x 0,y 0��modλ�h�x 0,y 0�× �ne −1��−he�x 0,y 0�× �ne −1�

,

(7)

where moda�b� represents the remainder of b divided by a.
We regard the square sum of Δf �1��x 0, y 0� and Δf �2��x 0, y 0�
as the equivalent judgment equation of the total phase error:

ΔF �x 0, y 0� �
X2
k�1

�Δf �k��x 0, y 0��2: (8)

Obviously, as the h�x 0, y 0� changes, the errors also change.
When ΔF �x 0, y 0� is the smallest, a suitable h�x 0, y 0� can be
found, which is the relief depth of the MCLM. In this paper,
equal-interval search is adopted to calculate h�x 0, y 0�. Taking
the e-ray as a reference,

h�x 0, y 0� � p�x 0, y 0� × λ

ne − 1
: (9)

In Eq. (9), p�x 0, y 0� ∈ �
0, 1

l ,
2
l ,…, N

l

�
(N is an integer),

where l is also an integer used to determine search accuracy.
Each search interval of h�x 0, y 0� is 1

l ×
λ

ne−1
. Note that the larger

l is, the higher the search accuracy is, but the longer the cal-
culation time will be. In general, we take l � 100. Substituting
p � 0, 1

l ,
2
l ,…, N

l into Eq. (9), we can obtain N � 1 values
of h�x 0, y 0�, which are 0, 1

l ×
λ

ne−1
×… × N

l ×
λ

ne−1
. Substituting

the N � 1 values into Eq. (7), and then utilizing Eq. (8),
we can find a suitable h�x 0, y 0� that minimizes ΔF�x 0, y 0�.

Each pixel is optimized in the same manner, and the final
relief depth distribution h can be obtained. Theoretically,
if the value range of h�x 0, y 0� is not limited (N → ∞), it is
certain that an appropriate h�x 0, y 0� can be found to make
ΔF �x 0, y 0� → 0. However, it is necessary to consider the actual
processing situation. In reality, if the depth is too shallow, it is
difficult to find a suitable h�x 0, y 0�, while if the depth is too
deep, it is not conducive to machining. Meanwhile, if the depth
falls outside a certain depth range, the quantized result will
become worse. Therefore, when determining the value range
of h�x 0, y 0� or the value of N , it is necessary to comprehensively
consider the above situations.

In this paper, to simplify the calculation, the search range of
depth is chosen as an integer multiple of λ

ne−1
, which provides a

phase modulation of integer multiple of 2π for the e ray [see
Eq. (6)]. Since the maximum value of p�x 0, y 0� in Eq. (9) is N

l ,
for satisfying the above condition, it requires N to be an in-
tegral multiple of l . First, letN � l � 100. The optimal depth
distribution is calculated by the equal-interval search algorithm,
which is quantized to a 16-level structure. Two orthogonal

complex fields will be calculated by diffraction calculation
for the o and e rays, which will be substituted into Eq. (5)
for calculating the two root mean square errors between the
two calculated complex fields and the desired orthogonal com-
plex fields, respectively. Second, in the same manner, multiple
optimized depth distributions respectively corresponding to
N � 200, 300,…, 1000 will be searched, and multigroup root
mean square errors can be calculated. Finally, according to the
criterion of minimizing the sum of root mean square errors,
we determine that the 16-level relief depth distribution corre-
sponding to N � 400 is the most appropriate.

4. SIMULATION

To verify the correctness of the above algorithm, we took a de-
sired light field, with its parameters as shown in Figs. 3(a)–3(d),
to carry out the simulation, where Fig. 3(a) is the intensity dis-
tribution I�x, y� of the desired light field that was used to char-
acterize the amplitude distribution A�x, y�. It is composed
of four characters from the movie “Journey to the West.”
Figure 3(b) represents the polarization state. The polarization
state of each character is linear polarization, with θ�x, y� � 0°,
45°, 90°, and 135°, as indicated by four blue arrows. Figure 3(c)
shows that the common phase φ�x, y� of the first two characters
was equal to 0.3π and the rest are equal to 0. Figure 3(d) shows
that the phase difference δ�x, y� of the last two characters is
equal to π and the rest are equal to 0.

The wavelength of incident light was 632.8 nm. The bire-
fringent material we chose was YVO4, which had a large bire-
fringence with refractive indices no and ne of 1.9929 and
2.2154, respectively. The array size used in the simulation is
1024 by 1024, with a pixel size of 8 μm × 8 μm. The imaging
distance was 0.7 m. We have compiled the modified GS algo-
rithm and relief depth search algorithm, and simulated the light
field modulation effect of the MCLM by using the software
MATLAB. The relief depth distribution of MCLM which
has 16 levels is shown in Fig. 4. The deepest relief depth of
the MCLM is 1.95 μm. The depth difference between adjacent
levels is 0.13 μm.

The designed MCLM is examined through simulation using
a polarization analyzer for incident light with equal amounts of
the two orthogonal eigen-polarizations, and the resultant light
field distributions are shown in Figs. 5(a)–5(e).

Figures 5(a)–5(e) represent the simulation result with 16
levels of quantization. Without a polarizer, all four characters
appear as shown in Fig. 5(a). Moreover, the simulated intensity
distribution is consistent with the original desired intensity dis-
tribution, which proves that the method can achieve the control

Fig. 3. Parameters of the light field in the four regions: (a) intensity
I�x, y�, (b) linear polarization θ � 0°, 45°, 90° and 135°, (c) common
phase φ�x, y�, and (d) phase differience δ�x, y�.
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of the amplitude of the incident light. Then, we simulated the
case where a linear polarizer analyzer was added to detect the
polarization state of the reconstructed light field. Figures 5(b)–
5(e) simulated that when the linear polarizer analyzer was ori-
ented at 0°, 45°, 90°, and 135°, the four characters appeared or
disappeared in turn. For example, when the linear polarizer
analyzer is oriented at 0°, the third character completely disap-
pears [Fig. 5(b)]. This confirmed that the area where the third
character is located has linearly polarized light with its polari-
zation orientation at 90°. Therefore, it could be seen from
Figs. 5(b)–5(e) that the light in the areas of each of the four
characters is all linearly polarized with their polarization orien-
tations at 0°, 45°, 90°, and 135°.

As can be seen from the simulation results, the modulation
of amplitude and polarization by a single MCLM can be real-
ized. Meanwhile, according to the description of Section 3.A,
the determined polarization state indicates that the phase differ-
ence between the o ray and the e ray is determined. Therefore,
the modulation of phase can also be achieved by the MCLM.
Furthermore, this method can also be utilized to completely
control a more complex light field.

5. PREPARATION AND EXPERIMENTAL
RESULTS OF MCLM

To verify the above design method and the simulation results,
the designed MCLM was fabricated and the optical effects were
tested by experiments. Here, a photolithography technique was
used to carry out the fabrication. As the designed MCLM was
quanticized to 16 levels of depth, multiple exposure and etch-
ing processes were carried out. The fabrication process of the
16-level structure is illustrated in Fig. 6.

Four masks used in the process are shown in Fig. 7. The
masks were used to carry out the exposure one by one to form
the 16-level structure. Also, etching processes were carried out
four times to transfer the structure into the YVO4 birefringent
crystal material. The etching depths in the four etching proc-
esses were 130, 260, 520, and 1040 nm. We ranked the four
masks according to the etching depth from shallow to deep.
The area within the blue dashed line represents the graphic area
of the masks, as shown in Fig. 7(a). As can be seen from the
structure observed by microscope of the four masks, the graphic
area was divided into two parts, which were black and white.
During the exposure process, the black and white parts deter-
mined whether light could pass through the mask.

The photoresist material AZ9260 was used to carry out the
exposure. The photoresist was spin-coated on the YVO4 crystal
substrate with rotation speed of 5000 rad/min. Process param-
eters of coating time, prebake temperature, prebake time,
and resist thickness were 30 s, 100°C, 10 min, and 3 μm, re-
spectively. An exposure system was employed to perform the

Fig. 4. Relief depth distribution of the MCLM that has 16 levels.
The depth difference between adjacent levels is 0.13 μm.

Fig. 5. Simulation results: (a) without polarizer; with polarizer ori-
ented at (b) 0°, (c) 45°, (d) 90°, and (e) 135°.

Fig. 6. Fabrication process of the MCLM: (a) the first etching with
etching depth of 130 nm, (b) the second etching with etching depth of
260 nm, (c) the third etching with etching depth of 520 nm, and
(d) the fourth etching with etching depth of 1024 nm.
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exposure process, with a illumination light source that is a
Hg lamp with a central wavelength of 365 nm. The total ex-
posure time was 20 s. Process parameters of development, after-
bake temperature, and after-bake time were 30 s, 120 °C, and
60 min, respectively. Ion beam etching was carried out to trans-
fer the structure into the substrate. The etching times in four
etching processes were 15, 30, 60, and 120 min. The resulting
average depths of the four etchings were 141, 240, 539, and
1050 nm, respectively. The practical and theoretical depth
errors were �11, −20, �19, and �24 nm, respectively. The
pictures of the obtained elements are shown in Fig. 8.
Figure 8(a) shows the photograph of the fabricated MCLM
and Fig. 8(b) shows the photo taken by microscope, from
which we can see the structure detail.

The experimental setup and light beam path were built to
test the MCLM, as shown in Fig. 9. The laser beam first propa-
gated through a polarizer oriented at 45° in order to obtain in-
cident linearly polarized light containing equal-amplitude o-ray
and e-ray light. Then, the obtained linear polarized light passed
through MCLM to produce the desired light field, of which
polarization state was detected by a linear polarizer analyzer.
The distance from the CCD to the location of the MCLM
was 0.7 m, which was the same as in the simulation process.

The desired intensity pattern was received by a CCD
(Fig. 10). Figure 10(a) shows the reconstructed light field,
of which the intensity distribution was consistent with the de-
sired light field. When there was no linear polarizer analyzer,
four characters appeared in the light field. By using the polarizer
analyzer to detect the polarization state of the desired light field,
we have obtained the patterns shown in Figs. 10(b)–10(e).
When the linear polarizer analyzer was oriented at 0°, 45°,
90°, and 135°, the four characters disappeared one after an-
other. As shown in Fig. 10(b), the third character completely
disappeared when the polarizer analyzer was oriented at 0°. This
indicated that the area where the third person was located was
90° linearly polarized. Detecting by the linear polarizer ana-
lyzer, it was easy to see that the polarized orientations of the
four characters are 0°, 45°, 90°, and 135°.

Meanwhile, it could be seen from the experimental results
that the light field generated by the MCLM was basically
consistent with the theoretical simulation results shown in
Figs. 5(a)–5(e), with only a few deviations caused by residual
manufacturing errors in the MCLM. It could be considered
that the experimental results were in great agreement with the
simulation results. Therefore, by utilizing only one MCLM,

Fig. 7. Four masks used in the MCLM fabrication process: (a) mask
one, (b) mask two, (c) mask three, and (d) mask four.

Fig. 8. (a) Fabricated MCLM. (b) Structure of the MCLM
observed under microscope.

Fig. 9. Experimental setup and light beam path for testing the
MCLM performance.

Fig. 10. Experimental results. The desired intensity pattern is re-
ceived by a CCD. (a) No polarizer analyzer. In (b)–(e), the polarizer
analyzer was oriented at 0°, 45°, 90°, and 135°, respectively.
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we have successfully controlled the phase, amplitude, and
polarization of incident light.

6. CONCLUSION

In this paper, we have proposed a new type of optical modu-
lation element called MCLM. The simulation and experimen-
tal results have shown that the MCLM successfully realizes
complete control of incident light amplitude, phase, and polari-
zation to obtain a tunable complex light field. The method pro-
posed in this paper can achieve any optical response controlled
by only one single MCLM component. The system is simple
and stable with little external interference. Moreover, it is ex-
pected to be used in the areas of optical fabrication and light
trapping.
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