• Photonics Research
  • Vol. 11, Issue 5, 757 (2023)
Lan Yu1, Yu Wang1, Yang Wang1, Kequn Zhuo1, Min Liu1、6、*, G. Ulrich Nienhaus2、3、4、5、7、*, and Peng Gao1、8、*
Author Affiliations
  • 1School of Physics, Xidian University, Xi’an 710071, China
  • 2Institute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
  • 3Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
  • 4Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
  • 5Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 6e-mail: lium@xidian.edu.cn
  • 7e-mail: uli@uiuc.edu
  • 8e-mail: peng.gao@xidian.edu.cn
  • show less
    DOI: 10.1364/PRJ.485575 Cite this Article Set citation alerts
    Lan Yu, Yu Wang, Yang Wang, Kequn Zhuo, Min Liu, G. Ulrich Nienhaus, Peng Gao. Two-beam phase correlation spectroscopy: a label-free holographic method to quantify particle flow in biofluids[J]. Photonics Research, 2023, 11(5): 757 Copy Citation Text show less

    Abstract

    We introduce two-beam phase correlation spectroscopy (2B-ΦCS) as a label-free technique to measure the dynamics of flowing particles; e.g., in vitro or in vivo blood flow. 2B-ΦCS combines phase imaging with correlation spectroscopy, using the intrinsic refractive index contrast of particles against the fluid background in correlation analysis. This method starts with the acquisition of a time series of phase images of flowing particles using partially coherent point-diffraction digital holographic microscopy. Then, phase fluctuations from two selected circular regions in the image series are correlated to determine the concentration and flow velocity of the particles by fitting pair correlation curves with a physical model. 2B-ΦCS is a facile procedure when using a microfluidic channel, as shown by the measurements on flowing yeast microparticles, polymethyl methacrylate microparticles, and diluted rat blood. In the latter experiment, the concentration and average diameter of rat blood cells were determined to be (4.7±1.9)×106 μL-1 and 4.6±0.4 μm, respectively. We further analyzed the flow of mainly red blood cells in the tail vessels of live zebrafish embryos. Arterial and venous flow velocities were measured as 290±110 μm s-1 and 120±50 μm s-1, respectively. We envision that our technique will find applications in imaging transparent organisms and other areas of the life sciences and biomedicine.
    Lan Yu, Yu Wang, Yang Wang, Kequn Zhuo, Min Liu, G. Ulrich Nienhaus, Peng Gao. Two-beam phase correlation spectroscopy: a label-free holographic method to quantify particle flow in biofluids[J]. Photonics Research, 2023, 11(5): 757
    Download Citation