• Photonics Research
  • Vol. 11, Issue 5, 757 (2023)
Lan Yu1, Yu Wang1, Yang Wang1, Kequn Zhuo1, Min Liu1、6、*, G. Ulrich Nienhaus2、3、4、5、7、*, and Peng Gao1、8、*
Author Affiliations
  • 1School of Physics, Xidian University, Xi’an 710071, China
  • 2Institute of Applied Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
  • 3Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
  • 4Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
  • 5Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 6e-mail: lium@xidian.edu.cn
  • 7e-mail: uli@uiuc.edu
  • 8e-mail: peng.gao@xidian.edu.cn
  • show less
    DOI: 10.1364/PRJ.485575 Cite this Article Set citation alerts
    Lan Yu, Yu Wang, Yang Wang, Kequn Zhuo, Min Liu, G. Ulrich Nienhaus, Peng Gao. Two-beam phase correlation spectroscopy: a label-free holographic method to quantify particle flow in biofluids[J]. Photonics Research, 2023, 11(5): 757 Copy Citation Text show less
    References

    [1] Y. Iturria-Medina, R. C. Sotero, P. J. Toussaint, J. M. Mateos-Pérez, A. C. Evans. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun., 7, 11934(2016).

    [2] K. Kisler, D. Lazic, M. D. Sweeney, S. Plunkett, M. El Khatib, S. A. Vinogradov, D. A. Boas, S. Sakadži, B. V. Zlokovic. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat. Protoc., 13, 1377-1402(2018).

    [3] R. J. Adrian, J. Westerweel. Particle Image Velocimetry(2011).

    [4] K. L. Pitts, R. Mehri, C. Mavriplis, M. Fenech. Micro-particle image velocimetry measurement of blood flow: validation and analysis of data pre-processing and processing methods. Meas. Sci. Technol., 23, 105302(2012).

    [5] D. X. Hammer, M. Mujat, R. D. Ferguson, N. Iftimia, D. Escobedo, J. T. Jenkins, H. Lim, T. E. Milner, M. D. Feldman. Imaging flow dynamics in murine coronary arteries with spectral domain optical Doppler tomography. Biomed. Opt. Express, 3, 701-714(2012).

    [6] Y. Li, J. Chen, Z. Chen. Advances in Doppler optical coherence tomography and angiography. Transl. Biophoton., 1, e201900005(2019).

    [7] J. You, C. Du, N. D. Volkow, Y. Pan. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. Biomed. Opt. Express, 5, 3217-3230(2014).

    [8] D. Seong, C. Lee, M. Jeon, J. Kim. Doppler optical coherence tomography for otology applications: from phantom simulation to in vivo experiment. Appl. Sci., 11, 5711(2021).

    [9] C. Zhongping, Z. Yonghua, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig. Optical Doppler tomography. IEEE J. Sel. Top. Quantum Electron., 5, 1134-1142(1999).

    [10] E. L. Elson, D. Magde. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers, 13, 1-27(1974).

    [11] D. Magde, W. W. Webb, E. L. Elson. Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers, 17, 361-376(1978).

    [12] J. Mütze, T. Ohrt, P. Schwille. Fluorescence correlation spectroscopy in vivo. Laser Photon. Rev., 5, 52-67(2011).

    [13] Y. Tian, M. M. Martinez, D. Pappas. Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc., 65, 115A(2011).

    [14] L. Yu, Y. Lei, Y. Ma, M. Liu, J. Zheng, D. Dan, P. Gao. A comprehensive review of fluorescence correlation spectroscopy. Front. Phys., 9, 644450(2021).

    [15] L. Zemanová, A. Schenk, M. J. Valler, G. U. Nienhaus, R. Heilker. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov. Today, 8, 1085-1093(2003).

    [16] M. Brinkmeier, K. Dörre, J. Stephan, M. Eigen. Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures. Anal. Chem., 71, 609-616(1999).

    [17] V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, P. Gao. Resolution enhancement in quantitative phase microscopy. Adv. Opt. Photon., 11, 135-214(2019).

    [18] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [19] P. Gao, C. Yuan. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review. Light Adv. Manuf., 3, 105-120(2022).

    [20] J. W. Goodman, R. W. Lawrence. Digital image formation from electronically detected holograms. Appl. Phys. Lett., 11, 77-79(1967).

    [21] K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors, 13, 4170-4191(2013).

    [22] W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, M. Wilke. Recent advances in digital holography. Appl. Opt., 53, G44-G63(2014).

    [23] F. C. Cheong, B. S. R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, D. G. Grier. Flow visualization and flow cytometry with holographic video microscopy. Opt. Express, 17, 13071-13079(2009).

    [24] J. Min, B. Yao, V. Trendafilova, S. Ketelhut, L. Kastl, B. Greve, B. Kemper. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy. J. Biophoton., 12, e201900085(2019).

    [25] F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, P. Ferraro. Tomographic flow cytometry by digital holography. Light Sci. Appl., 6, e16241(2017).

    [26] Y. J. Kang, E. Yeom, S.-J. Lee. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network. Biomicrofluidics, 7, 054111(2013).

    [27] K. Namdee, A. J. Thompson, P. Charoenphol, O. Eniola-Adefeso. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir, 29, 2530-2535(2013).

    [28] M. M. Qureshi, Y. Liu, K. D. Mac, M. Kim, A. M. Safi, E. Chung. Quantitative blood flow estimation in vivo by optical speckle image velocimetry. Optica, 8, 1092-1101(2021).

    [29] M. Gösch, H. Blom, J. Holm, T. Heino, R. Rigler. Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Anal. Chem., 72, 3260-3265(2000).

    [30] A. Osei-Bimpong, R. McLean, E. Bhonda, S. M. Lewis. The use of the white cell count and haemoglobin in combination as an effective screen to predict the normality of the full blood count. Int. J. Lab. Hematol., 34, 91-97(2012).

    [31] S. Sakuljaitrong, S. Chomko, C. Talubmook, N. Buddhakala. Effect of flower extract from lotus (Nelumbo nucifera) on haematological values and blood cell characteristics in streptozotocin-induced diabetic rats. ARPN J. Sci. Technol., 2, 1049-1054(2012).

    [32] H. C. Yalcin, A. Amindari, J. T. Butcher, A. Althani, M. Yacoub. Heart function and hemodynamic analysis for zebrafish embryos. Dev. Dynam., 246, 868-880(2017).

    [33] L. Ma, G. Rajshekhar, R. Wang, B. Bhaduri, S. Sridharan, M. Mir, A. Chakraborty, R. Iyer, S. Prasanth, L. Millet, M. U. Gillette, G. Popescu. Phase correlation imaging of unlabeled cell dynamics. Sci. Rep., 6, 32702(2016).

    [34] F. M. Benslimane, Z. Z. Zakaria, S. Shurbaji, M. K. A. Abdelrasool, M. A. H. Al-Badr, E. S. K. Al Absi, H. C. Yalcin. Cardiac function and blood flow hemodynamics assessment of zebrafish (Daniorerio) using high-speed video microscopy. Micro, 136, 102876(2020).

    [35] K. Zhuo, Y. Wang, Y. Wang, K. Wen, M. Liu, Y. Ma, J. Zheng, P. Gao. Partially coherent illumination based point-diffraction digital holographic microscopy study dynamics of live cells. Front. Phys., 9, 796935(2021).

    [36] L. Yu, Y. Wang, Y. Wang, K. Zhuo, Y. Ma, M. Liu, J. Zheng, J. L. Li, J. H. Li, P. Gao. Phase image correlation spectroscopy for detecting microfluidic dynamics. Appl. Opt., 61, 5944-5950(2022).

    Lan Yu, Yu Wang, Yang Wang, Kequn Zhuo, Min Liu, G. Ulrich Nienhaus, Peng Gao. Two-beam phase correlation spectroscopy: a label-free holographic method to quantify particle flow in biofluids[J]. Photonics Research, 2023, 11(5): 757
    Download Citation