• Photonics Research
  • Vol. 7, Issue 2, 193 (2019)
Swe Z. Oo1、2、*, Antulio Tarazona2, Ali Z. Khokhar2, Rafidah Petra1, Yohann Franz2, Goran Z. Mashanovich2, Graham T. Reed2、3, Anna C. Peacock2, and Harold M. H. Chong1
Author Affiliations
  • 1School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
  • 2Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
  • show less
    DOI: 10.1364/PRJ.7.000193 Cite this Article Set citation alerts
    Swe Z. Oo, Antulio Tarazona, Ali Z. Khokhar, Rafidah Petra, Yohann Franz, Goran Z. Mashanovich, Graham T. Reed, Anna C. Peacock, Harold M. H. Chong. Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices[J]. Photonics Research, 2019, 7(2): 193 Copy Citation Text show less
    References

    [1] S. K. A. Neyer, E. Rabe, D. Cai. Polymer waveguide technologies for optical interconnects. European Conference on Integrated Optics (ECIO), ThD0(2007).

    [2] A. Yeniay, R. Gao, K. Takayama, R. Gao, A. F. Garito. Ultra-low-loss polymer waveguides. J. Lightwave Technol., 22, 154-158(2004).

    [3] C. K. Wong, H. Wong, M. Chan, Y. T. Chow, H. P. Chan. Silicon oxynitride integrated waveguide for on-chip optical interconnects applications. Microelectron. Reliab., 48, 212-218(2008).

    [4] E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, C. T. Sullivan. Fabrication techniques for low-loss silicon nitride waveguides. Proc. SPIE, 5720, 1-11(2005).

    [5] G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, E. Terzini. Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics. Proc. SPIE, 3278, 286-292(1998).

    [6] A. Harke, M. Krause, J. Mueller. Low-loss single mode amorphous silicon waveguides. Electron. Lett., 41, 1377-1379(2005).

    [7] R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, L. C. Kimerling. Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer. Appl. Phys. Lett., 94, 141108(2009).

    [8] S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets. Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry. Opt. Commun., 282, 1767-1770(2009).

    [9] S. Zhu, G. Q. Lo, D. L. Kwong. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability. Opt. Express, 18, 25283-25291(2010).

    [10] J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, S. Arai. Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate. Jpn. J. Appl. Phys., 50, 120208(2011).

    [11] T. Lipka, O. Horn, J. Amthor, J. Müller. Low-loss multilayer compatible a-Si:H optical thin films for photonic applications. JEOS RP, 7, 12033(2012).

    [12] R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, T. Kamei. Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect. Opt. Express, 22, 4779-4788(2014).

    [13] P. Padmanabhan, G. Franco. Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling. Optoeletronics: Materials and Techniques, 496(2011).

    [14] T. Karabacak, Y. P. Zhao, G. C. Wang, T. M. Lu. Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B, 64, 085323(2001).

    [15] M. H. Brodsky, M. Cardona, J. J. Cuomo. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B, 16, 3556-3571(1977).

    [16] Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD. AIP Adv., 4, 057122(2014).

    [17] J. Robertson. Deposition mechanism of hydrogenated amorphous silicon. J. Appl. Phys., 87, 2608-2617(2000).

    [18] D. Kaplan, N. Sol, G. Velasco, P. A. Thomas. Hydrogenation of evaporated amorphous silicon films by plasma treatment. Appl. Phys. Lett., 33, 440-442(1978).

    [19] H. Matsumura. Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon. Jpn. J. Appl. Phys., 25, L949-L951(1986).

    [20] Y. A. Vlasov, S. J. McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express, 12, 1622-1631(2004).

    [21] D. K. Sparacin, S. J. Spector, L. C. Kimerling. Silicon waveguide sidewall smoothing by wet chemical oxidation. J. Lightwave Technol., 23, 2455-2461(2005).

    [22] M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett., 44, 115-116(2008).

    [23] R. E. I. Schropp. Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities. ECS Trans., 25, 3-14(2009).

    [24] A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, M. Hideki. Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range. 7th IEEE International Conference on Group IV Photonics, 269-271(2010).

    [25] R. S. Crandalla, X. Liub, E. Iwaniczkoa. Recent developments in hot wire amorphous silicon. J. Non-Cryst. Solids, 227–230, 23-28(1998).

    [26] K. F. Feenstra, R. E. I. Schropp, W. F. Van der Weg. Deposition of amorphous silicon films by hot-wire chemical vapor deposition. J. Appl. Phys., 85, 6843-6852(1999).

    [27] A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, I. Balberg. Deposition of device quality, low H content amorphous silicon. J. Appl. Phys., 69, 6728-6730(1991).

    [28] S. Tange, K. Inoue, K. Tonokura, M. Koshi. Catalytic decomposition of SiH4 on a hot filament. Thin Solid Films, 395, 42-46(2001).

    [29] K. Tonokura, K. Inoue, M. Koshi. Chemical kinetics for film growth in silicon HWCVD. J. Non-Cryst. Solids, 299–302, 25-29(2002).

    [30] Y.-F. Wang, R. Pollard. An approach for modeling surface reaction kinetics in chemical vapor deposition processes. J. Electrochem. Soc., 142, 1712-1725(1995).

    [31] T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, M. Kumeda. Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM. J. Non-Cryst. Solids, 114, 630-632(1989).

    [32] S. Taebi, M. Khorasaninejad, S. Singh Saini. Modified Fabry-Perot interferometric method for waveguide loss measurement. Appl. Opt., 47, 6625-6630(2008).

    [33] D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, Q. Wang. Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition. J. Appl. Phys., 94, 2930-2936(2003).

    [34] Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, Y. Kuwano. Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge. Jpn. J. Appl. Phys., 24, 385-389(1985).

    [35] J. M. Marshall, R. Carius, D. Dimova-Malinovska. Structural and optical properties of microcrystalline silicon for solar cell applications. Photovoltaic and Photoactive Materials: Properties, Technology and Applications, 353(2002).

    [36] D. Beeman, R. Tsu, M. F. Thorpe. Structural information from the Raman spectrum of amorphous silicon. Phys. Rev. B, 32, 874-878(1985).

    [37] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, H. Wagner. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A, 77, 1447-1460(1998).

    [38] S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, I. Balberg. The effect of hydrogen on the network disorder in hydrogenated amorphous silicon. Appl. Phys. Lett., 75, 2803-2805(1999).

    [39] Z. Wang, D. Flötotto, E. J. Mittemeijer. Stress originating from nanovoids in hydrogenated amorphous semiconductors. J. Appl. Phys., 121, 095307(2017).

    [40] A. H. M. Smets, W. M. M. Kessels, M. C. M. van de Sanden. Vacancies and voids in hydrogenated amorphous silicon. Appl. Phys. Lett., 82, 1547-1549(2003).

    [41] E. V. Johnson, L. Kroely, P. Roca i Cabarrocas. Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics. Solar Energy Mater. Sol. Cells, 93, 1904-1906(2009).

    [42] M. Hideki. Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method. Jpn. J. Appl. Phys., 37, 3175-3187(1998).

    [43] A. H. M. Smets, T. Matsui, M. Kondo. High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime. J. Appl. Phys., 104, 034508(2008).

    [44] D. Stryahilev, F. Diehl, B. Schröder. The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H. J. Non-Cryst. Solids, 266–269, 166-170(2000).

    [45] D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, K. M. Walsh. Engineering stress in thin films for the field of bistable MEMS. J. Micromech. Microeng., 25, 125025(2015).

    [46] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, G. Ganguly. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics. J. Appl. Phys., 92, 2424-2436(2002).

    Swe Z. Oo, Antulio Tarazona, Ali Z. Khokhar, Rafidah Petra, Yohann Franz, Goran Z. Mashanovich, Graham T. Reed, Anna C. Peacock, Harold M. H. Chong. Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices[J]. Photonics Research, 2019, 7(2): 193
    Download Citation