• Chinese Optics Letters
  • Vol. 19, Issue 3, 030603 (2021)
Christian R. Petersen1、3、*, Mikkel B. Lotz2, Christos Markos1、3, Getinet Woyessa1, David Furniss4, Angela B. Seddon4, Rafael J. Taboryski2, and O. Bang1、3、5
Author Affiliations
  • 1DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • 2DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
  • 3NORBLIS, DK-2830 Virum, Denmark
  • 4Mid-Infrared Photonics Group, University of Nottingham, Nottingham NG7 2RD, UK
  • 5NKT Photonics, DK-3460 Birkerød, Denmark
  • show less
    DOI: 10.3788/COL202119.030603 Cite this Article Set citation alerts
    Christian R. Petersen, Mikkel B. Lotz, Christos Markos, Getinet Woyessa, David Furniss, Angela B. Seddon, Rafael J. Taboryski, O. Bang. Thermo-mechanical dynamics of nanoimprinting anti-reflective structures onto small-core mid-IR chalcogenide fibers [Invited][J]. Chinese Optics Letters, 2021, 19(3): 030603 Copy Citation Text show less
    References

    [1] N. S. Kapany, R. J. Simms. Recent developments in infrared fiber optics. Infrared Phys., 5, 69(1965).

    [2] J. Heo, M. Rodrigues, S. J. Saggese, G. H. Sigel. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. Appl. Opt., 30, 3944(1991).

    [3] C. Markos, O. Bang. Nonlinear label-free biosensing with high sensitivity using As2S3 chalcogenide tapered fiber. J. Lightwave Technol., 33, 2892(2015).

    [4] L. Sojka, Z. Tang, D. Jayasuriya, M. Shen, J. Nunes, D. Furniss, M. Farries, T. M. Benson, A. B. Seddon, S. Sujecki. Milliwatt-level spontaneous emission across the 3.5–8 µm spectral region from Pr3+ doped selenide chalcogenide fiber pumped with a laser diode. Appl. Sci., 10, 539(2020).

    [5] B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, J. Lucas. Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng., 53, 027101(2014).

    [6] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photon., 8, 830(2014).

    [7] R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, A. I. Ifarraguerri. Mid-infrared supercontinuum generation from 1.6 to >11 µm using concatenated step-index fluoride and chalcogenide fibers. Opt. Lett., 43, 296(2018).

    [8] S. Venck, F. St-Hilaire, L. Brilland, A. N. Ghosh, R. Chahal, C. Caillaud, M. Meneghetti, J. Troles, F. Joulain, S. Cozic, S. Poulain, G. Huss, M. Rochette, J. M. Dudley, T. Sylvestre. 2–10 µm mid-infrared fiber-based supercontinuum laser source: experiment and simulation. Laser Photon. Rev., 14, 2000011(2020).

    [9] B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, B. Luther-Davies. High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. J. Am. Ceram. Soc., 99, 2565(2016).

    [10] T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, Y. Ohishi. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber. Opt. Lett., 41, 2117(2016).

    [11] Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R. Wang. Mid-infrared supercontinuum covering 2.0–16 µm in a low-loss telluride single-mode fiber. Laser Photon. Rev., 11, 1700005(2017).

    [12] Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, M. F. Churbanov. Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics. Opt. Mater. Express, 5, 1722(2015).

    [13]

    [14] A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, S. B. Mirov, L. Shah, A. F. Abouraddy, M. C. Richardson, K. L. Schepler. High power single-mode delivery of mid-infrared sources through chalcogenide fiber. Opt. Express, 26, 7313(2018).

    [15] L. E. Busse, C. Florea, B. Shaw, V. Nguyen, J. S. Sanghera, I. Aggarwal, F. Kung. Antireflective surface structures on IR fibers for high power transmission. Advanced Solid State Lasers, AM2A-5(2013).

    [16] M.-H. Lee, D.-Y. Khang. Facile generation of surface structures having opposite tone in metal-assisted chemical etching of Si: pillars vs. holes. RSC Adv., 3, 26313(2013).

    [17] Y. Kanamori, M. Okochi, K. Hane. Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography. Opt. Express, 21, 322(2013).

    [18] C. Florea, J. Sanghera, L. Busse, B. Shaw, F. Miklos, I. Aggarwal. Reduced Fresnel losses in chalcogenide fibers obtained through fiber-end microstructuring. Appl. Opt., 50, 17(2011).

    [19] C. R. Petersen, M. B. Lotz, G. Woyessa, A. N. Ghosh, T. Sylvestre, L. Brilland, J. Troles, M. H. Jakobsen, R. Taboryski, O. Bang. Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Opt. Lett., 44, 5505(2019).

    [20] M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, R. Taboryski. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica, 5, 557(2018).

    [21] R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal. Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers. Opt. Express, 24, 10172(2016).

    [22] Z. Zmrhalová, P. Pilný, R. Svoboda, J. Shánělová, J. Málek. Thermal properties and viscous flow behavior of As2Se3 glass. J. Alloys Compd., 655, 220(2016).

    [23] Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, T. Wagner. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. Opt. Lett., 34, 1234(2009).

    [24] N. Ostrovsky, D. Yehuda, S. Tzadka, E. Kassis, S. Joseph, M. Schvartzman. Direct imprint of optical functionalities on free-form chalcogenide glasses. Adv. Opt. Mater., 7, 1900652(2019).

    [25] Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, J. Hu. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration. Adv. Opt. Mater., 2, 759(2014).

    [26] B. D. MacLeod, D. S. Hobbs, E. Sabatino. Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems. Proc. SPIE, 8016, 80160Q(2011).

    [27] M. Lotz, J. Needham, M. H. Jakobsen, R. Taboryski. Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared. Opt. Lett., 44, 4383(2019).

    [28] A. Prasad, C.-J. Zho, R.-P. Wang, A. Smith, S. Madden, B. Luther-Davies. Properties of GexAsySe1-x-y glasses for all-optical signal processing. Opt. Express, 16, 2804(2008).

    [29] A. Linares, R. Benavente. Effect of sulfonation on thermal, mechanical, and electrical properties of blends based on polysulfones. Polym. J., 41, 407(2009).

    [30] J. H. Savage. Infrared Optical Materials and Their Antireflection Coatings(1985).

    [31] S. D. Savage, C. A. Miller, D. Furniss, A. B. Seddon. Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers. J. Non-Cryst. Solids, 354, 3418(2008).

    [32] G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, A. F. Abouraddy. Infrared fibers. Adv. Opt. Photon., 7, 379(2015).

    [33] J. D. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, K. Richardson. Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system. J. Appl. Phys., 110, 063503(2011).

    [34] P. Toupin, L. Brilland, J. Troles, J.-L. Adam. Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses. Opt. Mater. Express, 2, 1359(2012).

    [35] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, O. Bang. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett., 43, 999(2018).

    [36] F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, S. Février. Supercontinuum-based Fourier transform infrared spectromicroscopy. Optica, 5, 378(2018).

    [37] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, O. Bang. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [38] I. Zorin, P. Gattinger, M. Brandstetter, B. Heise. Dual-band infrared optical coherence tomography using a single supercontinuum source. Opt. Express, 28, 7858(2020).

    [39] C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, O. Bang. Towards a table-top synchrotron based on supercontinuum generation. Infrared Phys. Technol., 91, 182(2018).

    [40] K. Eslami Jahromi, M. Nematollahi, Q. Pan, M. A. Abbas, S. M. Cristescu, F. J. M. Harren, A. Khodabakhsh. Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Opt. Express, 28, 26091(2020).

    Data from CrossRef

    [1] S. Santhosh, R. Rajasekar, V. K. Gobinath, C. Moganapriya, S. Arun Kumar, A. Manju Sri. Influence of Electrosprayed MoSe2 Antireflective Surface Coatings on Performance of Multicrystalline Silicon Solar Cell. Silicon(2021).

    Christian R. Petersen, Mikkel B. Lotz, Christos Markos, Getinet Woyessa, David Furniss, Angela B. Seddon, Rafael J. Taboryski, O. Bang. Thermo-mechanical dynamics of nanoimprinting anti-reflective structures onto small-core mid-IR chalcogenide fibers [Invited][J]. Chinese Optics Letters, 2021, 19(3): 030603
    Download Citation