[1] H Angermann, E Conrad, L Korte et al. Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer. Mater Sci Eng B, 159, 219(2010).
[2] R Barrio, N González, J Cárabe et al. Optimisation of NaOH texturisation process of silicon wafers for heterojunction solar-cells applications. Sol Energy, 86, 845(2012).
[3] C Simeon, B Finch. Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog Photovolt: Res Appl, 19, 406(2011).
[4] F Hiroyuki, K Michio. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si/a-Si:H/c-Si solar cells. Appl Phys Lett, 90, 013503(2007).
[5] J Kegela, H Angermann, U Stürzebecher et al. Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization. Appl Surf Sci, 301, 56(2014).
[6] J Kegela, H Angermann, U Stürzebecher et al. IPA-free textured a-Si:H/c-Si heterojunction solar cells exceeding 20% efficiency. Proc 28th EU PVSEC, 1093(2013).
[7] R S Bonilla, B Hoex, P Hamer et al. Dielectric surface passivation for silicon solar cells: A review. Phys Status Solidi, 7, 214(2017).
[8] M Edwards, S Bowden, U Das. Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells, 92, 1373(2008).
[9] Z Mrazkova, I P Sobkowicz, M Foldyna et al. Optical properties and performance of pyramidal texture silicon heterojunction solar cells: Key role of vertex angles. Prog Photovolt: Res Appl, 26, 369(2018).
[10] H Nagel, C Berge, A G Aberle. Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. J Appl Phys, 86, 6218(1999).
[11] S C Siah, C Berge, A G Aberle et al. Proof-of-concept framework to separate recombination processes in thin silicon wafers using transient free-carrier absorption spectroscopy. J Appl Phys, 117, 662(2015).
[12] L Fesquet, S Olibet, J D Lacoste et al. Modification of textured silicon wafer surface morphology for fabrication of heterojunction solar cell with open circuit voltage over 700 mV. Photovoltaic Specialists Conference, 754(2009).
[13] S D Wolf, D Kondo. Abruptness of a-Si:H/c-Si interface revealed by carrier lifetime measurements. Appl Phys Lett, 90, 042111(2007).
[14] J D Lacoste, C P Roca. Toward a better physical understanding of a-Si:H/c-Si heterojunction solar cells. J Appl Phys, 105, 345(2009).
[15] U K Das, M Z Burrows, M Lu et al. Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films. Appl Phys Lett, 92, 481(2008).
[16] B Stegemann, J Kegel, M Mews et al. Passivation of textured silicon wafers: influence of pyramid size distribution, a-Si:H deposition temperature, and post-treatment. Energy Procedia, 38, 881(2013).
[17] S Y Lien, C H Yang, Y S Lin et al. Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell. Mater Chem Phys, 133, 63(2012).
[18]