• Photonics Research
  • Vol. 9, Issue 10, 1881 (2021)
Guan-Jie Fan-Yuan1、2、3, Feng-Yu Lu1、2、3, Shuang Wang1、2、3、*, Zhen-Qiang Yin1、2、3, De-Yong He1、2、3, Zheng Zhou1、2、3, Jun Teng1、2、3, Wei Chen1、2、3, Guang-Can Guo1、2、3, and Zheng-Fu Han1、2、3
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3State Key Laboratory of Cryptology, Beijing 100878, China
  • show less
    DOI: 10.1364/PRJ.428309 Cite this Article Set citation alerts
    Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Zheng Zhou, Jun Teng, Wei Chen, Guang-Can Guo, Zheng-Fu Han. Measurement-device-independent quantum key distribution for nonstandalone networks[J]. Photonics Research, 2021, 9(10): 1881 Copy Citation Text show less
    References

    [1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Conference on Computers, Systems and Signal Processing, 175-179(1984).

    [2] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661-663(1991).

    [3] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).

    [4] G. S. Vernam. Cipher printing telegraph systems: for secret wire and radio telegraphic communications. J. AIEE, 45, 109-115(1926).

    [5] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [6] D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill. Security of quantum key distribution with imperfect devices. International Symposium on Information Theory (ISIT), 136(2004).

    [7] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [8] S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    [9] C. Elliott. Building the quantum network. New J. Phys., 4, 46(2002).

    [10] B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, A. J. Shields. A quantum access network. Nature, 501, 69-72(2013).

    [11] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh. Current status of the DARPA quantum network. Proc. SPIE, 5815, 138-149(2005).

    [12] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, A. Zeilinger. The SECOQC quantum key distribution network in Vienna. New J. Phys., 11, 075001(2009).

    [13] W. Chen, Z.-F. Han, T. Zhang, H. Wen, Z.-Q. Yin, F.-X. Xu, Q.-L. Wu, Y. Liu, Y. Zhang, X.-F. Mo, Y.-Z. Gui, G. Wei, G.-C. Guo. Field experiment on a ‘star type’ metropolitan quantum key distribution network. IEEE Photon. Technol. Lett., 21, 575-577(2009).

    [14] S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Field test of wavelength-saving quantum key distribution network. Opt. Lett., 35, 2454-2456(2010).

    [15] T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan. Metropolitan all-pass and inter-city quantum communication network. Opt. Express, 18, 27217-27225(2010).

    [16] D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, H. Zbinden. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys., 13, 123001(2011).

    [17] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express, 19, 10387-10409(2011).

    [18] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).

    [19] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. Zhang, K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng, J.-W. Pan. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589, 214-219(2021).

    [20] S. Wehner, D. Elkouss, R. Hanson. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).

    [21] H. Zhou, K. Lv, L. Huang, X. Ma. Security assessment and key management in a quantum network(2019).

    [22] H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81, 5932-5935(1998).

    [23] L.-M. Duan, M. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [24] N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33-80(2011).

    [25] S. Bäuml, M. Christandl, K. Horodecki, A. Winter. Limitations on quantum key repeaters. Nat. Commun., 6, 6908(2015).

    [26] S. L. Braunstein, S. Pirandola. Side-channel-free quantum key distribution. Phys. Rev. Lett., 108, 130502(2012).

    [27] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).

    [28] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, H.-K. Lo. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).

    [29] M. Lucamarini, Z. L. Yuan, J. F. Dynes, A. J. Shields. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-418(2018).

    [30] X. F. Ma, P. Zeng, H. Y. Zhou. Phase-matching quantum key distribution. Phys. Rev. X, 8, 031043(2018).

    [31] X. B. Wang, Z. W. Yu, X. L. Hu. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A, 98, 062323(2018).

    [32] C. H. Cui, Z. Q. Yin, R. Wang, W. Chen, S. Wang, G. C. Guo, Z. F. Han. Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl., 11, 034053(2019).

    [33] D. Mayers, A. Yao. Quantum cryptography with imperfect apparatus. 39th Annual Symposium on Foundations of Computer Science, 503-509(1998).

    [34] L. Masanes, S. Pironio, A. Acín. Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun., 2, 238(2011).

    [35] B. W. Reichardt, F. Unger, U. Vazirani. Classical command of quantum systems. Nature, 496, 456-460(2013).

    [36] U. Vazirani, T. Vidick. Fully device-independent quantum key distribution. Phys. Rev. Lett., 113, 140501(2014).

    [37] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, T. Vidick. Practical device-independent quantum cryptography via entropy accumulation. Nat. Commun., 9, 459(2018).

    [38] L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. Penty, A. Shields. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics, 10, 312-315(2016).

    [39] C. Wang, X.-T. Song, Z.-Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, Z.-F. Han. Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett., 115, 160502(2015).

    [40] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [41] X.-Y. Zhou, H.-J. Ding, C.-H. Zhang, J. Li, C.-M. Zhang, Q. Wang. Experimental three-state measurement-device-independent quantum key distribution with uncharacterized sources. Opt. Lett., 45, 4176-4179(2020).

    [42] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, J.-W. Pan. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X, 6, 011024(2016).

    [43] H.-K. Lo, M. Curty, K. Tamaki. Secure quantum key distribution. Nat. Photonics, 8, 595-604(2014).

    [44] X. Ma, M. Razavi. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A, 86, 062319(2012).

    [45] Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A. W. Sharpe, A. R. Dixon, E. Lavelle, J. F. Dynes, A. Murakami, M. Kujiraoka, M. Lucamarini, Y. Tanizawa, H. Sato, A. J. Shields. 10-Mb/s quantum key distribution. J. Lightwave Technol., 36, 3427-3433(2018).

    [46] P. Nikolich, C. Lin, J. Korhonen, R. Marks, B. Tye, G. Li, J. Ni, S. Zhang. Standards for 5G and beyond: their use cases and applications. IEEE 5G Tech Focus, 1, 1(2017).

    [47] A. Mizutani, K. Tamaki, R. Ikuta, T. Yamamoto, N. Imoto. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol. Sci. Rep., 4, 5236(2014).

    [48] B. Qi, H. Lo, C. C. W. Lim, G. Siopsis, E. A. Chitambar, R. Pooser, P. G. Evans, W. Grice. Free-space reconfigurable quantum key distribution network. IEEE International Conference on Space Optical Systems and Applications (ICSOS), 1-6(2015).

    [49] G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, E. Andersson. Experimental measurement-device-independent quantum digital signatures. Nat. Commun., 8, 1098(2017).

    [50] C. Gobby, Z. L. Yuan, A. J. Shields. Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett., 84, 3762-3764(2004).

    [51] Z. L. Yuan, A. W. Sharpe, A. J. Shields. Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett., 90, 011118(2007).

    [52] C.-H. Zhang, X.-Y. Zhou, H.-J. Ding, C.-M. Zhang, G.-C. Guo, Q. Wang. Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl., 10, 034033(2018).

    [53] X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, G.-C. Guo. Faraday–Michelson system for quantum cryptography. Opt. Lett., 30, 2632-2634(2005).

    [54] J.-Y. Liu, H.-J. Ding, C.-M. Zhang, S.-P. Xie, Q. Wang. Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl., 12, 014059(2019).

    [55] K. Tamaki, H.-K. Lo, C.-H. F. Fung, B. Qi. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A, 85, 042307(2012).

    [56] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, H. Zbinden. Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A, 89, 022307(2014).

    [57] C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 4, 1016-1023(2017).

    [58] N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, G. Leuchs. Device calibration impacts security of quantum key distribution. Phys. Rev. Lett., 107, 110501(2011).

    [59] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [60] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).

    [61] X. Ma, B. Qi, Y. Zhao, H.-K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 72, 012326(2005).

    [62] G.-J. Fan-Yuan, Z.-H. Wang, S. Wang, Z.-Q. Yin, W. Chen, D.-Y. He, G.-C. Guo, Z.-F. Han. Optimizing decoy-state protocols for practical quantum key distribution systems. Adv. Quantum Technolog., 4, 2000131(2021).

    [63] http://www.qasky.com/en/default.asp. http://www.qasky.com/en/default.asp

    [64] J. Kennedy. Particle swarm optimization. Encyclopedia of Machine Learning, 760-766(2010).

    [65] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat., 23, 493-507(1952).

    [66] W. Hoeffding. Probability inequalities for sums of bounded random variables. The Collected Works of Wassily Hoeffding, 409-426(1994).

    [67] G.-J. Fan-Yuan, C. Wang, S. Wang, Z.-Q. Yin, H. Liu, W. Chen, D.-Y. He, Z.-F. Han, G.-C. Guo. Afterpulse analysis for quantum key distribution. Phys. Rev. Appl., 10, 064032(2018).

    Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Zheng Zhou, Jun Teng, Wei Chen, Guang-Can Guo, Zheng-Fu Han. Measurement-device-independent quantum key distribution for nonstandalone networks[J]. Photonics Research, 2021, 9(10): 1881
    Download Citation