• Photonics Research
  • Vol. 9, Issue 10, 1881 (2021)
Guan-Jie Fan-Yuan1、2、3, Feng-Yu Lu1、2、3, Shuang Wang1、2、3、*, Zhen-Qiang Yin1、2、3, De-Yong He1、2、3, Zheng Zhou1、2、3, Jun Teng1、2、3, Wei Chen1、2、3, Guang-Can Guo1、2、3, and Zheng-Fu Han1、2、3
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3State Key Laboratory of Cryptology, Beijing 100878, China
  • show less
    DOI: 10.1364/PRJ.428309 Cite this Article Set citation alerts
    Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Zheng Zhou, Jun Teng, Wei Chen, Guang-Can Guo, Zheng-Fu Han. Measurement-device-independent quantum key distribution for nonstandalone networks[J]. Photonics Research, 2021, 9(10): 1881 Copy Citation Text show less

    Abstract

    Untrusted node networks initially implemented by measurement-device-independent quantum key distribution (MDI-QKD) protocol are a crucial step on the roadmap of the quantum Internet. Considering extensive QKD implementations of trusted node networks, a workable upgrading tactic of existing networks toward MDI networks needs to be explicit. Here, referring to the nonstandalone (NSA) network of 5G, we propose an NSA-MDI scheme as an evolutionary selection for existing phase-encoding BB84 networks. Our solution can upgrade the BB84 networks and terminals that employ various phase-encoding schemes to immediately support MDI without hardware changes. This cost-effective upgrade effectively promotes the deployment of MDI networks as a step of untrusted node networks while taking full advantage of existing networks. In addition, the diversified demands on security and bandwidth are satisfied, and network survivability is improved.
    QιaιbX|θa=θb=ιaιb2,QιaιbX|θaθb=0,EιaιbX=QX|θaθbQX|θa=θb+QX|θaθb=0,QιaιbY|θa=θb=(ιa+ιb)22ιaιb8,QιaιbY|θaθb=(ιa+ιb)2+2ιaιb8,EιaιbY=QY|θa=θbQY|θa=θb+QY|θaθb=ιa2+ιb22(ιa+ιb)2=ιa=ιb14.

    View in Article

    R=PμX2(μ2e2μY11X,L(1H2(e11Y,U))QμaμbXfeH2((EμaμbX))),

    View in Article

    R=1N(s0X+s1X(1H2(e1,pX))λEC6log221εseclog22εcor),

    View in Article

    |eiϕaμaa|eiϕbμba,(A1)

    View in Article

    |eiϕaμa2al|ei(ϕa+θa)μa2as|eiϕbμb2bl|ei(ϕb+θb)μb2bs,(A2)

    View in Article

    |eiϕaμaηa2al|ei(ϕa+θa)μaηa2as|eiϕbμbηb2bl|ei(ϕb+θb)μbηb2bs,(A3)

    View in Article

    |eiϕaμaηa2eiϕbμbηb2ll|ei(ϕa+θa+θc)μaηa2+ei(ϕb+θb+θc)μbηb2ss|ei(ϕa+θc)μaηa2+ei(ϕb+θc)μbηb2ls|ei(ϕa+θa)μaηa2ei(ϕb+θb)μbηb2sl,(A4)

    View in Article

    |μaηa22(ei(ϕa+θc)+ei(ϕa+θa))+μbηb22(ei(ϕb+θc)ei(ϕb+θb))D1|μaηa22(ei(ϕa+θc)ei(ϕa+θa))+μbηb22(ei(ϕb+θc)+ei(ϕb+θb))D2.(A5)

    View in Article

    |ψ1D1|ψ2D2.(A6)

    View in Article

    pμD1=1(1Y0)(1Pap)exp(|ψ1|2),pμD2=1(1Y0)(1Pap)exp(|ψ2|2),(A7)

    View in Article

    |ψ1|2=μaηa4(1+cos(θcθa))+μbηb4(1cos(θcθb))+μaηaμbηb4(cos(ϕaϕb)+cos(ϕaϕb+θaθc)cos(ϕbϕa+θbθc)cos(ϕaϕb+θaθb))|ψ2|2=μaηa4(1cos(θcθa))+μbηb4(1+cos(θcθb))+μaηaμbηb4(cos(ϕaϕb)+cos(ϕaϕb+θcθb)cos(ϕbϕa+θcθa)cos(ϕaϕb+θaθb)).(A8)

    View in Article

    A=μaηa2,B=μbηb2.(A9)

    View in Article

    QμX|θa=θb=θa=θb{0,π}14π202π02πpμD1pμD2dϕadϕb=2(1(1Y0)(1Pap)(22A22B2)+(1Y0)2(1Pap)2(12A2)(12B2)),QμX|θaθb=θaθb{0,π}14π202π02πpμD1pμD2dϕadϕb=2(1(1Y0)(1Pap)(22A22B2)+(1Y0)2(1Pap)2(12A22B2)).(A10)

    View in Article

    QμX=QμX|θa=θb+QμX|θaθb,EμXQμX=edQμX|θa=θb+(1ed)QμX|θaθb,(A11)

    View in Article

    QμY|θa=θb=θa=θb{π2,3π2}14π202π02πpμD1pμD2dϕadϕb=2(1(1Y0)(1Pap)(22A22B2)+(1Y0)2(1Pap)2((1A2B2)22A2B2)),QμY|θaθb=θaθb{π2,3π2}14π202π02πpμD1pμD2dϕadϕb=2(1(1Y0)(1Pap)(22A22B2)+(1Y0)2(1Pap)2((1A2B2)2+2A2B2)),(A12)

    View in Article

    QμY=QμY|θa=θb+QμY|θaθb,EμYQμY=edQμY|θa=θb+(1ed)QμY|θaθb.(A13)

    View in Article

    R=PμX2(μ2e2μY11X,L(1H2(e11Y,U))QμaμbXfeH2(EμaμbX),(B1)

    View in Article

    Y11X,L=1(μaωa)(μbωb)(νaωa)(μbωb)(μaωa)×((μa2ωa2)(μbωb)(QνaνbX,Le(νa+νb)+QωaωbX,Le(ωa+ωb)QνaωbX,Ue(νa+ωb)QωaνbX,Ue(ωa+νb))(νa2ωa2)(νbωb)(QμaμbX,Ue(μa+μb)+QωaωbX,Ue(ωa+ωb)QμaωbX,Le(μa+ωb)QωaμbX,Le(ωa+μb))),(B2)

    View in Article

    e11Y,U=1(νaωa)(νbωb)Y11Y,L×(e(νa+νb)EQνaνbY,U+e(ωaωb)EQωaωbY,Ue(νa+ωb)EQνaωbY,Le(ωa+νb)EQωaνbY,L),(B3)

    View in Article

    Y11Y,L=1(μaωa)(μbωb)(νaωa)(μbωb)(μaωa)×((μa2ωa2)(μbωb)(QνaνbY,Le(νa+νb)+QωaωbY,Le(ωa+ωb)QνaωbY,Ue(νa+ωb)QωaνbY,Ue(ωa+νb))(νa2ωa2)(νbωb)(QμaμbY,Ue(μa+μb)+QωaωbY,Ue(ωa+ωb)QμaωbY,Le(μa+ωb)QωaμbY,Le(ωa+μb))),(B4)

    View in Article

    Qαaαbβ,U=Qαaαbβ(1+f((ε/2)4/16)NαaαbβQαaαbβ)Qαaαbβ,L=Qαaαbβ(1f((ε/2)3/2)NαaαbβQαaαbβ)EQαaαbβ,U=EQαaαbβ(1+f((ε/2)4/16)NαaαbβEQαaαbβ)EQαaαbβ,L=EQαaαbβ(1f((ε/2)3/2)NαaαbβEQαaαbβ),(B5)

    View in Article

    R=1N(s0X+s1X(1H2(e1,pX))λEC6log221εseclog22εcor),(C1)

    View in Article

    s0ω=τ0ν1ν2(eν2ν1nν2β,UPν2eν1ν2nν1β,LPν1),(C2)

    View in Article

    s1ω=μτ1μν1μν2ν12+ν22(eν1nν1β,LPν1eν2nν2β,UPν2ν12ν22μ2(eμnμω,UPμs0βτ0)),(C3)

    View in Article

    e1,pβ=v1β¯s1β¯+γ(εsec,v1β¯s1β¯,s1β¯,s1β),(C4)

    View in Article

    γ(a,b,c,d)=(c+d)(1b)bln2cdlog2(c+dcd(1b)b212a2),(C5)

    View in Article

    v1β=τ1ν1ν2(eν1mν1β,UPν1eν2mν2β,LPν2).(C6)

    View in Article

    nαβ,U=nαβ+nβ2ln21εsec,nαβ,L=nαβnβ2ln21εsec,mαβ,U=mαβ+mβ2ln21εsec,mαβ,L=mαβmβ2ln21εsec,(C7)

    View in Article

    Guan-Jie Fan-Yuan, Feng-Yu Lu, Shuang Wang, Zhen-Qiang Yin, De-Yong He, Zheng Zhou, Jun Teng, Wei Chen, Guang-Can Guo, Zheng-Fu Han. Measurement-device-independent quantum key distribution for nonstandalone networks[J]. Photonics Research, 2021, 9(10): 1881
    Download Citation