• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0727001 (2023)
Lei Xing*, Guang Yang, Min Nie, Yuanhua Liu, and Meiling Zhang
Author Affiliations
  • School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China
  • show less
    DOI: 10.3788/LOP213228 Cite this Article Set citation alerts
    Lei Xing, Guang Yang, Min Nie, Yuanhua Liu, Meiling Zhang. Routing Protocol for Quantum Multicast Networks Based on Hyperentangled Relays[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727001 Copy Citation Text show less
    References

    [1] Cao Y, Zhao Y L. Research progress of quantum communication networks[J]. Laser Journal, 40, 1-7(2019).

    [2] Shi B S, Tomita A. Teleportation of an unknown state by W state[J]. Physics Letters A, 296, 161-164(2002).

    [3] Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Physics Letters A, 352, 55-58(2006).

    [4] Li X H, Ghose S. Analysis of N-qubit perfect controlled teleportation schemes from the controller’s point of view[J]. Physical Review A, 91, 012320(2015).

    [5] Dür W, Briegel H J, Cirac J I et al. Quantum repeaters based on entanglement purification[J]. Physical Review A, 59, 169-181(1999).

    [6] Kimble H J. The quantum Internet[J]. Nature, 453, 1023-1030(2008).

    [7] Pant M, Krovi H, Towsley D et al. Routing entanglement in the quantum Internet[J]. Npj Quantum Information, 5, 25(2019).

    [8] Huberman B A, Lund B. A quantum router for the entangled web[J]. Information Systems Frontiers, 22, 37-43(2020).

    [9] Nie M, Guo J W, Wei R Y et al. Simulation of quantum satellite network routing protocol based on two-end entanglement exchange[J]. Laser & Optoelectronics Progress, 58, 0306002(2021).

    [10] Zhou X Q, Wu Y W. Broadcast and multicast in quantum teleportation internet[J]. Acta Physica Sinica, 61, 170303(2012).

    [11] Shi P, Li N C, Wang S M et al. Quantum multi-user broadcast protocol for the platform as a service model[J]. Sensors, 19, 5257(2019).

    [12] Lemm M, Wilde M M. Information-theoretic limitations on approximate quantum cloning and broadcasting[J]. Physical Review A, 96, 012304(2017).

    [13] Shi Y Y, Soljanin E. On multicast in quantum networks[C], 871-876(2006).

    [14] Wang X J, An L X, Meng F X et al. A multicast scheme based on fidelity metrics in quantum networks[J]. IEEE Access, 7, 65703-65713(2019).

    [15] Zhao N, Li W D, Yu Y. Quantum broadcast and multicast schemes based on partially entangled channel[J]. IEEE Access, 8, 29658-29666(2020).

    [16] Yu Y, Zhao N, Pei C X et al. Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement[J]. Chinese Physics B, 30, 090302(2021).

    [17] Yang G, Xing L, Nie M et al. Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states[J]. Chinese Physics B, 30, 030301(2021).

    [18] Wang X L, Cai X D, Su Z E et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 518, 516-519(2015).

    [19] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 4, 282-286(2008).

    [20] Wang T J, Song S Y, Long G L. Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities[J]. Physical Review A, 85, 062311(2012).

    [21] Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication[J]. Physical Review A, 82, 032318(2010).

    [22] Deng F G, Ren B C, Li X H. Quantum hyperentanglement and its applications in quantum information processing[J]. Science Bulletin, 62, 46-68(2017).

    [23] Barreiro J T, Langford N K, Peters N A et al. Generation of hyperentangled photon pairs[J]. Physical Review Letters, 95, 260501(2005).

    [24] Gao C Y, Ren B C, Zhang Y X et al. Universal linear-optical hyperentangled Bell-state measurement[J]. Applied Physics Express, 13, 027004(2020).

    [25] Zhou P, Lü L. Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements[J]. Quantum Information Processing, 19, 283(2020).

    [26] Deng R, Gao J, He X W. Research on channel estimation technology based on superimposed training in diamond relay networks[J]. Journal of Signal Processing, 34, 1143-1150(2018).

    [27] Zhai S Q, Yuan N, Liu K. EPR quantum steering switch based on entanglement swapping[J]. Acta Optica Sinica, 41, 1627002(2021).

    [28] Wang J Q, Zhang Y. Non-destructive bell state measurement based on parity gates[J]. Acta Optica Sinica, 41, 2027002(2021).

    [29] Chen L Y, Li Z C, Cheng H et al. Progress of metasurface-enabled preparation and manipulation of quantum states[J]. Acta Optica Sinica, 41, 0823016(2021).

    [30] Fan H, Wang Y N, Jing L et al. Quantum cloning machines and the applications[J]. Physics Reports, 544, 241-322(2014).

    [31] Scarani V, Iblisdir S, Gisin N et al. Quantum cloning[J]. Reviews of Modern Physics, 77, 1225-1256(2005).

    [32] Nagali E, Giovannini D, Marrucci L et al. Experimental optimal cloning of four-dimensional quantum states of photons[J]. Physical Review Letters, 105, 073602(2010).

    [33] Gisin N, Massar S. Optimal quantum cloning machines[J]. Physical Review Letters, 79, 2153-2156(1997).

    [34] Ma H, Zhu Y N, Niu X Y et al. Research on improved triangular mesh surface subdivision algorithm master thesis[J]. Journal of Physics: Conference Series, 1621, 012053(2020).

    [35] Trietsch D, Hwang F. An improved algorithm for Steiner trees[J]. SIAM Journal on Applied Mathematics, 50, 244-263(1990).

    Lei Xing, Guang Yang, Min Nie, Yuanhua Liu, Meiling Zhang. Routing Protocol for Quantum Multicast Networks Based on Hyperentangled Relays[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727001
    Download Citation