• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0727001 (2023)
Lei Xing*, Guang Yang, Min Nie, Yuanhua Liu, and Meiling Zhang
Author Affiliations
  • School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China
  • show less
    DOI: 10.3788/LOP213228 Cite this Article Set citation alerts
    Lei Xing, Guang Yang, Min Nie, Yuanhua Liu, Meiling Zhang. Routing Protocol for Quantum Multicast Networks Based on Hyperentangled Relays[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727001 Copy Citation Text show less
    Principle of simultaneous hyperentanglement swapping based on hyperentangled relay
    Fig. 1. Principle of simultaneous hyperentanglement swapping based on hyperentangled relay
    Relationship between the number of clone state and fidelity
    Fig. 2. Relationship between the number of clone state and fidelity
    Diamond quantum network model based on hyperentangled relay
    Fig. 3. Diamond quantum network model based on hyperentangled relay
    Multicast tree set based on hyperentangled relay. (a) Multicast tree t1; (b) multicast tree t2; (c) multicast tree t3; (d) multicast tree t4
    Fig. 4. Multicast tree set based on hyperentangled relay. (a) Multicast tree t1; (b) multicast tree t2; (c) multicast tree t3; (d) multicast tree t4
    Relationship between clone state fidelity and the number of destination nodes
    Fig. 5. Relationship between clone state fidelity and the number of destination nodes
    Relationship between entanglement swapping delay of multicast communication and number of relay nodes
    Fig. 6. Relationship between entanglement swapping delay of multicast communication and number of relay nodes
    Relationship between quantum state transmission rate and number of relay nodes
    Fig. 7. Relationship between quantum state transmission rate and number of relay nodes
    Measurement results of R1 to Rk-1Bob’s operation on his particle
    k=1N-1MPk1¯k=1N-1MPk2¯k=1N-1MSk1¯k=1N-1MSk2¯=1U1=σPIσSI
    k=1N-1MPk1¯k=1N-1MPk2¯k=1N-1MSk1¯k=1N-1MSk2=1U2=σPIσSZ
    k=1N-1MPk1¯k=1N-1MPk2¯k=1N-1MSk1k=1N-1MSk2¯=1U3=σPIσSX
    k=1N-1MPk1¯k=1N-1MPk2¯k=1N-1MSk1k=1N-1MSk2=1U4=σPIσS-Y
    k=1N-1MPk1¯k=1N-1MPk2k=1N-1MSk1¯k=1N-1MSk2¯=1U5=σPZσSI
    k=1N-1MPk1¯k=1N-1MPk2k=1N-1MSk1¯k=1N-1MSk2=1U6=σPZσSZ
    k=1N-1MPk1¯k=1N-1MPk2k=1N-1MSk1k=1N-1MSk2¯=1U7=σPZσSX
    k=1N-1MPk1¯k=1N-1MPk2k=1N-1MSk1k=1N-1MSk2=1U8=σPZσS-Y
    k=1N-1MPk1k=1N-1MPk2¯k=1N-1MSk1¯k=1N-1MSk2¯=1U9=σPXσSI
    k=1N-1MPk1k=1N-1MPk2¯k=1N-1MSk1¯k=1N-1MSk2=1U10=σPXσSZ
    k=1N-1MPk1k=1N-1MPk2¯k=1N-1MSk1k=1N-1MSk2¯=1U11=σPXσSX
    k=1N-1MPk1k=1N-1MPk2¯k=1N-1MSk1k=1N-1MSk2=1U12=σPXσS-Y
    k=1N-1MPk1k=1N-1MPk2k=1N-1MSk1¯k=1N-1MSk2¯=1U13=σP-YσSI
    k=1N-1MPk1k=1N-1MPk2k=1N-1MSk1¯k=1N-1MSk2=1U14=σP-YσSZ
    k=1N-1MPk1k=1N-1MPk2k=1N-1MSk1k=1N-1MSk2¯=1U15=σP-YσSX
    k=1N-1MPk1k=1N-1MPk2k=1N-1MSk1k=1N-1MSk2=1U16=σP-YσS-Y
    Table 1. Unitary operations of Bob in N-hop simultaneous hyperentanglement swapping
    Lei Xing, Guang Yang, Min Nie, Yuanhua Liu, Meiling Zhang. Routing Protocol for Quantum Multicast Networks Based on Hyperentangled Relays[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0727001
    Download Citation