• Photonics Research
  • Vol. 8, Issue 5, 755 (2020)
Jianliang Huang1、2, Chengcheng Zhao1、2, Biying Nie1、2, Shiyu Xie3、4、*, Dominic C. M. Kwan3, Xiao Meng3, Yanhua Zhang1、2, Diana L. Huffaker3, and Wenquan Ma1、2、5、*
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Physics and Astronomy, Cardiff University, Cardiff, UK
  • 4e-mail: XieS1@cardiff.ac.uk
  • 5e-mail: wqma@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.385177 Cite this Article Set citation alerts
    Jianliang Huang, Chengcheng Zhao, Biying Nie, Shiyu Xie, Dominic C. M. Kwan, Xiao Meng, Yanhua Zhang, Diana L. Huffaker, Wenquan Ma. High-performance mid-wavelength InAs avalanche photodiode using AlAs0.13Sb0.87 as the multiplication layer[J]. Photonics Research, 2020, 8(5): 755 Copy Citation Text show less
    References

    [1] J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, J. Abshire. A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications. J. Electron. Mater., 43, 2970-2977(2014).

    [2] J. Abautret, J. P. Perez, A. Evirgen, J. Rothman, A. Cordat, P. Christol. Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys., 117, 244502(2015).

    [3] A. Rogalski. Recent progress in infrared detector technologies. Infrared Phys. Technol., 54, 136-154(2010).

    [4] C. H. Tan, A. Velichko, L. W. L. J. S. Ng. Few-photon detection using InAs avalanche photodiodes. Opt. Express, 27, 5835-5842(2019).

    [5] R. J. McIntyre. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices, 13, 164-168(1966).

    [6] J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, J. Campbell. The HgCdTe electron avalanche photodiode. J. Electron. Mater., 35, 1166-1173(2006).

    [7] W. L. Sun, Z. W. Lu, X. G. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, S. R. Bank. High-gain InAs avalanche photodiodes. IEEE J. Quantum Electron., 49, 154-161(2013).

    [8] A. R. J. Marshall, C. H. Tan, M. J. Steer, J. P. R. David. Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes. Appl. Phys. Lett., 93, 111107(2008).

    [9] A. R. J. Marshall, J. P. R. David, C. H. Tan, M. J. Steer. Impact ionization in InAs electron avalanche photodiode. IEEE Trans. Electron Devices, 57, 2631-2638(2010).

    [10] A. R. J. Marshall, C. H. Tan, M. J. Steer, J. P. R. David. Extremely low excess noise in InAs electron avalanche photodiodes. IEEE Photonics Technol. Lett., 21, 866-868(2009).

    [11] P. J. Ker, A. R. J. Marshall, J. P. R. David, C. H. Tan. Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing. Phys. Status Solidi C, 9, 310-313(2012).

    [12] X. X. Zhou, J. S. Ng, C. H. Tan. InAs photodiode for low temperature sensing. Proc. SPIE, 9639, 963901(2015).

    [13] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815-5875(2001).

    [14] W. L. Sun, S. J. Maddox, S. R. Bank, J. C. Campbell. Room temperature high-gain InAs/AlAsSb avalanche photodiode. IEEE Photonics Conference, 350-351(2014).

    [15] P. J. Ker, J. P. R. David, C. H. Tan. Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes. Opt. Express, 20, 29568-29576(2012).

    [16] C. H. Tan, S. Y. Xie, J. J. Xie. Low noise avalanche photodiodes incorporating a 40  nm AlAsSb avalanche region. IEEE J. Quantum Electron., 48, 36-41(2016).

    [17] X. Yi, S. Y. Xie, B. L. Liang, L. W. Lim, X. X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, J. P. R. David. Demonstration of large ionization coefficient ratio in AlAs0.56Sb0.44 lattice matched to InP. Sci. Rep., 8, 9107(2018).

    [18] X. Yi, S. Y. Xie, B. L. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, J. P. R. David. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photonics, 13, 683-686(2019).

    [19] M. E. Woodson, M. Ren, S. J. Maddox, Y. J. Chen, S. R. Bank, J. C. Campbel. Low-noise AlInAsSb avalanche photodiode. Appl. Phys. Lett., 108, 081102(2016).

    [20] Q. Li, W. Q. Ma, Y. H. Zhang, K. Cui, J. L. Huang, Y. Wei, Y. L. Cao, W. Y. Wang, Y. L. Liu, P. Jin. Dark current mechanism of unpassivated mid wavelength type II InAs/GaSb superlattice infrared photodetector. Chin. Sci. Bull., 59, 3696-3700(2014).

    [21] . InAs photodiodes. Laser-Components(2019).

    [22] J. S. Ng, X. X. Zhou, A. Auckloo, B. White, S. Y. Zhang, A. Krysa, J. P. R. David, C. H. Tan. High sensitivity InAs photodiodes for mid-infrared detection. Proc. SPIE, 9988, 99880K(2016).

    [23] Y. Yuan, A. K. Rockwell, Y. W. Peng, J. Y. Zheng, S. D. March, A. H. Jones, M. Ren, S. R. Bank, J. C. Campbell. Comparison of different period digital alloy Al0.7InAsSb avalanche photodiodes. J. Lightwave Technol., 37, 3647-3654(2019).

    [24] M. S. Long, A. Y. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. J. Fu, E. F. Liu, X. S. Chen, W. Lu, T. Nilges, J. B. Xu, X. M. Wang, W. D. Hu, F. Miao. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 3, e1700589(2017).

    [25] . Indium arsenide detectors(2018).

    [26] . InAs photovoltaic detector p10090-01(2018).

    [27] A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, C. H. Tan. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. Opt. Express, 19, 23341-23349(2011).

    Jianliang Huang, Chengcheng Zhao, Biying Nie, Shiyu Xie, Dominic C. M. Kwan, Xiao Meng, Yanhua Zhang, Diana L. Huffaker, Wenquan Ma. High-performance mid-wavelength InAs avalanche photodiode using AlAs0.13Sb0.87 as the multiplication layer[J]. Photonics Research, 2020, 8(5): 755
    Download Citation