• Journal of Semiconductors
  • Vol. 40, Issue 4, 042901 (2019)
Wei Xiao1 and Jinglin Xiao2
Author Affiliations
  • 1Department of Basic Sciences, University of Informational Science and Technology of Beijing, Beijing 100101, China
  • 2Institute of Condensed Matter Physics, Inner Mongolia University for the Nationalities, Tongliao 028043, China
  • show less
    DOI: 10.1088/1674-4926/40/4/042901 Cite this Article
    Wei Xiao, Jinglin Xiao. The energy-level and vibrational frequency properties of a polaron weak-coupled in a quantum well with asymmetrical Gaussian confinement potential[J]. Journal of Semiconductors, 2019, 40(4): 042901 Copy Citation Text show less
    References

    [1] O Ozturk, E Ozturk, S Elagoz. The effect of barrier width on the electronic properties of double GaAlAs/GaAs and GaInAs/GaAs quantum wells. J Mol Struct, 1156, 726(2018).

    [2] P S Samokhvalov, P A Linkov, M A Zvaigzne et al. Optical properties of core-multishell quantum dots. KnE Energy Phys, 3, 449(2018).

    [3] Z Cai, B Liu, X Zou et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 118, 6091(2018).

    [4] M Belitsch, C Gruber, H Ditlbacher et al. Gray state dynamics in the blinking of single type I colloidal quantum dots. Nano, 13, 1850039(2018).

    [5] J Müßener, A T Ludwig, S Kalinowski et al. Optical emission of GaN/AlN quantum-wires–the role of charge transfer from a nanowire template. Nanoscale, 10, 5591(2018).

    [6] L J Chen. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv, 8, 18396(2018).

    [7] P Moon, C Forsythe, X Zhou et al. Electronic structure engineering of graphene using patterned dielectric superlattices. Bull Am Phys Soc(2018).

    [8] X Wu, J Li, M Briggeman et al. Breaking electron pairs in pseudogap state in SmTiO3/SrTiO3/SmTiO3 quantum wells. Bull Am Phys Soc(2018).

    [9] O Ambacher, J Majewski, C Miskys et al. Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures. J Phys: Conden Matter, 14, 3399(2002).

    [10] T Makino, Y Segawa, M Kawasaki et al. Optical properties of excitons in ZnO-based quantum well heterostructures. Semicond Sci Technol, 20, S78(2005).

    [11] M E Aumer, S F Leboeuf, S M Bedair et al. Effects of tensile and compressive strain on the luminescence properties of AlInGaN/InGaN quantum well structures. Appl Phys Lett, 77, 821(2000).

    [12] S Nandi. The quantum Gaussian well. Am J Phys, 78, 1341(2010).

    [13] J Wu, K Guo, G Liu. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields. Physica B, 446, 59(2014).

    [14] J L Xiao. The effects of hydrogen-like impurity and temperature on state energies and transition frequency of strong-coupling bound polaron in an asymmetric gaussian potential quantum well. J Low Temp Phys, 192, 41(2018).

    [15] J L Xiao. Properties of strong-coupling polaron in an asymmetrical gaussian confinement potential quantum well. Journal of Inner Mongolia University for Nationalities, 30, 369(2015).

    [16] T D Lee, F E Low, D Pines. The motion of slow electrons in a polar crystal. Phys Rev, 90, 297(1953).

    [17] W J Huybrechts. Note on the ground-state energy of the Feynman polaron model. J Physs C, 9, L211(1976).

    [18]

    Wei Xiao, Jinglin Xiao. The energy-level and vibrational frequency properties of a polaron weak-coupled in a quantum well with asymmetrical Gaussian confinement potential[J]. Journal of Semiconductors, 2019, 40(4): 042901
    Download Citation