• Acta Optica Sinica
  • Vol. 43, Issue 6, 0601011 (2023)
Yutao Feng1、*, Di Fu1、2, Zengliang Zhao3, Weiguo Zong4, Tao Yu5, Zheng Sheng6, and Yajun Zhu7
Author Affiliations
  • 1Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Institute of Applied Meteorology, Beijing 100029, China
  • 4Key Laboratory of Space Weather, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
  • 5School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, Hubei, China
  • 6College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan, China
  • 7State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100088, China
  • show less
    DOI: 10.3788/AOS221462 Cite this Article Set citation alerts
    Yutao Feng, Di Fu, Zengliang Zhao, Weiguo Zong, Tao Yu, Zheng Sheng, Yajun Zhu. An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011 Copy Citation Text show less
    References

    [1] Zhang S P, Roble R G, Shepherd G G. Tidal influence on the oxygen and hydroxyl nightglows: wind imaging interferometer observations and thermosphere/ionosphere/mesosphere electrodynamics general circulation model[J]. Journal of Geophysical Research, 106, 21381-21393(2001).

    [2] Fleming E L, Chandra S, Barnett J J et al. Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude[J]. Advances in Space Research, 10, 11-59(1990).

    [3] Pierce R M, Roark S E. Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry[J]. Applied Optics, 51, 1853-1864(2012).

    [4] Zhu X, Yee J H, Talaat E R. Diagnosis of dynamics and energy balance in the mesosphere and lower thermosphere[J]. Journal of the Atmospheric Sciences, 58, 2441-2454(2001).

    [5] Forsythe M. Atmospheric motion vectors: past, present and future[EB/OL]. https://www.ecmwf.int/sites/default/files/elibrary/2008/9445-atmospheric-motion-vectors-past-present-and-future.pdf

    [6] Velden C. Environmental satellite data utilization: determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR satellite soundings[J]. Review of Policy Research, 27, 491-507(2004).

    [7] Shepherd G G. Development of wind measurement systems for future space missions[J]. Acta Astronautica, 115, 206-217(2015).

    [8] McCleese D J, Margolis J S. Remote sensing of stratospheric and mesospheric winds by gas correlation electrooptic phase-modulation spectroscopy[J]. Applied Optics, 22, 2528(1983).

    [9] Key J R, Santek D, Velden C S et al. Cloud-drift and water vapor winds in the polar regions from MODISIR[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 482-492(2003).

    [10] Tokuno M. Operational system for extracting cloud motion and water vapor motion winds from GMS-5 image data[EB/OL]. http://cimss.ssec.wisc.edu/iwwg/iww3/p21-30_Tokuno-Operational.pdf

    [11] Tokuno M. Improvements in the method to extract operational cloud motion winds and water vapor motion winds of the GMS-5 system[EB/OL]. http://cimss.ssec.wisc.edu/iwwg/iww4/p61-68_Tokuno-Improvements.pdf

    [12] Jiang W, Lai Y Y, Fan Y et al. Research on the measurement model and algorithm of wind vector field based on satellite cloud images(cloud motion winds)[J]. Mathematics in Practice and Theory, 43, 123-138(2013).

    [13] Velden C S, Hayden C M, Nieman S J et al. Upper-tropospheric winds derived from geostationary satellite water vapor observations[J]. Bulletin of the American Meteorological Society, 78, 173-195(1997).

    [14] Le Marshall J. Cloud and water vapour motion vectors in tropical cyclone track forecasting: a review[J]. Meteorology and Atmospheric Physics, 65, 141-151(1998).

    [15] Dong C H, Yang J, Yang Z D et al. An overview of a new Chinese weather Satellite FY-3A[J]. Bulletin of the American Meteorological Society, 90, 1531-1544(2009).

    [16] Zhang Z Q, Lu F, Fang X et al. Application and development of FY-4 meteorological satellite[J]. Aerospace Shanghai, 34, 8-19(2017).

    [17] Lu F, Zhang X H, Chen B Y et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects[J]. Journal of Marine Meteorology, 37, 1-12(2017).

    [18] Liu Z M, Zhang Q S, Yan M. Analysis of the results of cloud wind guide by geostationary satellite[J]. Meteorological Disaster Prevention, 9, 15-18(2002).

    [19] Zhao H. An improved algorithm for extracting atmospheric motion signals in “cloud-free region” from GEO satellite and its applications in case study[D](2014).

    [20] Zhang C M. Application of electromagnetic Doppler effect in upper atmosphere detection[J]. College Physics, 38, 52-54, 59(2019).

    [21] Miecznik G, Pierce R, Huang P et al. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile[J]. Proceedings of SPIE, 6677, 66771C(2007).

    [22] Pierce R, Roark S, Grund C et al. Passive A-band wind sounder (PAWS) for measuring tropospheric wind velocity[C], 358-361(2008).

    [23] Zhang C M, Wang W, Xiangli B et al. Interference image spectroscopy for upper atmospheric wind field measurement[J]. Acta Optica Sinica, 20, 234-239(2000).

    [24] Tang Y H, Zhang C M, Chen G D et al. Recent progress of the key technique for atmospheric wind measurement[J]. Progress in Physics, 25, 142-152(2005).

    [25] Rahnama P, Rochon Y J, McDade I C et al. Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: instrument model and measurement simulation[J]. Journal of Atmospheric and Oceanic Technology, 23, 753-769(2006).

    [26] He W W, Wu K J, Feng Y T et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation[J]. Remote Sensing, 11, 914(2019).

    [27] Nieman S J, Schmetz J, Menzel W P. A comparison of several techniques to assign heights to cloud tracers[J]. Journal of Applied Meteorology, 32, 1559-1568(1993).

    [28] Bai J, Wang H Q, Tao Z Y. The deriving of cloud motion winds from IR images of GMS[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 33, 85-92(1997).

    [29] Cai P Y. Research on cloud detection and cloud image prediction method based on FY-4A satellite[D](2021).

    [30] Wang Z H, Xu J M, Kelly G. Deriving cloud motion vectors from high temporal resolution images based on Fourier phase analysis technique[J]. Scientia Meteorologica Sinica, 24, 9-15(2004).

    [31] Long Z Y, Shi H Q, Huang S X. A new idea of cloud motion wind derived from satellite images[J]. Acta Physica Sinica, 60, 059202(2011).

    [32] Kumar S S, Rao T N, Taori A. A novel approach for the extraction of cloud motion vectors using airglow imager measurements[J]. Atmospheric Measurement Techniques, 8, 3893-3901(2015).

    [33] Arking A, Lo R C, Rosenfeld A. A Fourier approach to cloud motion estimation[J]. Journal of Applied Meteorology, 17, 735-744(1978).

    [34] Tan Y Q, Huang B, Shi X K. A method fusing conventional wind field with cloud motion wind and its application in location forecast of the severe convection[J]. Meteorological and Environmental Research, 5, 9-12, 18(2014).

    [35] Schmetz J. Further improvement of cloud motion wind extraction techniques[EB/OL]. http://cimss.ssec.wisc.edu/iwwg/1st%20Wind%20Workshop/p15-20_SchmetzCloudMotion.pdf

    [36] Shang H Z, Husi L T, Li M et al. Remote sensing of cloud properties based on visible-to-infrared channel observation from passive remote sensing satellites[J]. Acta Optica Sinica, 42, 0600003(2022).

    [37] Carranza M, Borde R. Current status of the MTG-FCI AMV prototype[J]. Proceedings of SPIE, 11151, 1115117(2019).

    [38] Hursen K A, Ross R. GOES imager: overview and evolutionary development[J]. Proceedings of SPIE, 2812, 160-173(1996).

    [39] Wan X M, Gong J D, Han W et al. The evaluation of FY-4A AMVs in GRAPES_RAFS[J]. Meteorological Monthly, 45, 458-468(2019).

    [40] Griffith P. Advanced Himawari Imager (AHI) design and operational flexibility[EB/OL]. https://1library.net/document/y4jpr7ry-advanced-himawari-imager-design-opera tional-flexibility-paul-griffith.html

    [41] Bessho K, Date K J, Hayashi M et al. An introduction to Himawari-8/9: Japan′s new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan Ser II, 94, 151-183(2016).

    [42] Kazuki S. Introduction to the Himawari-8 atmospheric motion vector algorithm[EB/OL]. http://cimss.ssec.wisc.edu/iwwg/Docs/jma_amv_technical_note.pdf

    [43] Lebair W, Kronenwetter J A, Cauffman S A et al. The advanced baseline imager: the next generation of geostationary imager[J]. Proceedings of SPIE, 5570, 165-172(2004).

    [44] Daniels J. GOES-R advanced baseline imager (ABI) algorithm theoretical basis document for derived motion winds[EB/OL]. https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/DMW.pdf

    [45] Raja M K R V, Battles D, Wu X Q et al. In-orbit health and performance of operational AVHRR instruments[J]. Proceedings of SPIE, 7808, 780814(2010).

    [47] Pasternak F, Hollier P, SEVIRI Jouan J.. the new imager for Meteosat second generation[C], 1094-1099(1993).

    [48] Borde R, Carranza M, Hautecoeur O et al. Winds of change for future operational AMV at EUMETSAT[J]. Remote Sensing, 11, 2111-2129(2019).

    [49] Durand Y, Hallibert P, Wilson M et al. The flexible combined imager onboard MTG: from design to calibration[J]. Proceedings of SPIE, 9639, 963903(2015).

    [50] Holmlund K, Grandell J, Schmetz J et al. Meteosat third generation (MTG): continuation and innovation of observations from geostationary orbit[J]. Bulletin of the American Meteorological Society, 102, E990-E1015(2021).

    [51] Riguet F, Brousse E, Carel J L et al. Opto-mechanical design of the MTG FCI spectral separation assembly[J]. Proceedings of SPIE, 9626, 96261Y(2015).

    [52] Schueler C F, Clement J E, Miller S W et al. NPOESS VIIRS: next-generation polar-orbiting atmospheric imager[J]. Proceedings of SPIE, 4891, 50-64(2003).

    [53] Key J, Daniels J. Validated maturity science review for NOAA-20 VIIRS polar winds[EB/OL]. https://www.star.nesdis.noaa.gov/jpss/documents/AMM/N20/VPW_Validated.pdf

    [54] McConnochie T H, Bell J F III, Savransky D et al. THEMIS-VIS observations of clouds in the martian mesosphere: altitudes, wind speeds, and decameter-scale morphology[J]. Icarus, 210, 545-565(2010).

    [55] Sánchez-Lavega A, Chen-Chen H, Ordoñez-Etxeberria I et al. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express[J]. Icarus, 299, 194-205(2018).

    [56] Velden C. Environmental satellite data utilization: determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR satellite soundings[J]. Review of Policy Research, 27, 491-507(2004).

    [57] Santek D, Nebuda S, Stettner D. Demonstration and evaluation of 3D winds generated by tracking features in moisture and ozone fields derived from AIRS sounding retrievals[J]. Remote Sensing, 11, 2597(2019).

    [58] Zeng X B, Ackerman S, Ferraro R D et al. Challenges and opportunities in NASA weather research[J]. Bulletin of the American Meteorological Society, 97, ES137-ES140(2016).

    [59] Smith W L, Revercomb H E, Zhou D K et al. Geostationary Imaging Fourier Transform Spectrometer (GIFTS): science applications[J]. Proceedings of SPIE, 6405, 64050E(2006).

    [60] Elwell J D, Cantwell G W, Scott D K et al. A geosynchronous imaging Fourier transform spectrometer (GIFTS) for hyperspectral atmospheric remote sensing: instrument overview and preliminary performance results[J]. Proceedings of SPIE, 6297, 62970S(2006).

    [61] Zhou D K, Smith W L, Bingham G E et al. Ground-based measurements with the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) engineering demonstration unit-experiment description and first results[J]. Journal of Applied Remote Sensing, 1, 013528(2007).

    [62] Ma Z, Li J, Han W et al. Four-dimensional wind fields from geostationary hyperspectral infrared sounder radiance measurements with high temporal resolution[J]. Geophysical Research Letters, 48, 093794(2021).

    [63] Li L, Ni Z Y, Qi C L et al. Pre-launch radiometric calibration of geostationary interferometric infrared sounder on FengYun-4B satellite[J]. Acta Optica Sinica, 42, 0630001(2022).

    [64] Glumb R, Lapsley M, Luce S et al. HyperCube: a hyperspectral CubeSat constellation for measurements of 3D winds[J]. Proceedings of SPIE, 9978, 997805(2016).

    [65] Maschhoff K, Polizotti J, Aumann H et al. Concept development and risk reduction for MISTiC winds, A micro-satellite constellation approach for vertically resolved wind and IR sounding observations in the troposphere[J]. Remote Sensing, 11, 2169(2019).

    [66] Maschhoff K R, Polizotti J J, Aumann H H et al. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3D winds measurements[J]. Proceedings of SPIE, 10000, 100000L(2016).

    [67] Morse P G, Bates J C, Miller C R et al. Development and test of the atmospheric infrared sounder (AIRS) for the NASA earth observing system (EOS)[J]. Proceedings of SPIE, 3870, 281-292(1999).

    [68] Guo Q, Yang J, Wei C Y et al. Spectrum calibration of the first hyperspectral infrared measurements from a geostationary platform: method and preliminary assessment[J]. Quarterly Journal of the Royal Meteorological Society, 147, 1562-1583(2021).

    [69] Gault W A, Shepherd G G. WAMDII: a wide angle Michelson Doppler imaging interferometer for spacelab[J]. Advances in Space Research, 2, 111-114(1982).

    [70] Shepherd G G, Gault W A, Miller D W et al. WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab[J]. Applied Optics, 24, 1571-1584(1985).

    [71] Shepherd G G, Thuillier G, Gault W A et al. WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite[J]. Journal of Geophysical Research, 98, 10725-10750(1993).

    [72] Shepherd G G, Thuillier G, Cho Y M et al. The Wind Imaging Interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective[J]. Reviews of Geophysics, 50, 1-38(2012).

    [73] Rahnama P, Gault W A, McDade I C et al. Scientific assessment of the SWIFT instrument design[J]. Journal of Atmospheric and Oceanic Technology, 30, 2081-2094(2013).

    [74] Rahnama P[M]. Mission simulation and instrument design for the Stratospheric Wind Interferometer for Transport Studies (SWIFT) instrument(2010).

    [75] Rahnama P, Gault W, McDade I et al. Onboard calibration and monitoring for the SWIFT instrument[J]. Measurement Science and Technology, 23, 105801(2012).

    [76] Ward W E, Gault W A, Rowlands N et al. Imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamics Atmosphere Mars Observer (DYNAMO)[J]. Proceedings of SPIE, 4833, 226-236(2003).

    [77] Hao Z B, Ye H Q, Tang L et al. Improvement of wavelength calibration accuracy of astronomical high-resolution spectrometers with Fabry-Perot etalons[J]. Acta Optica Sinica, 42, 0112002(2022).

    [78] Abreu V J, Hays P B, Skinner W R. The high resolution Doppler imager[J]. Optics and Photonics News, 2, 28-30(1991).

    [79] Hays P B, Abreu V J, Dobbs M E et al. The high-resolution Doppler imager on the upper atmosphere research satellite[J]. Journal of Geophysical Research, 98, 10713-10723(1993).

    [80] Ortland D A, Skinner W R, Hays P B et al. Measurements of stratospheric winds by the high resolution Doppler imager[J]. Journal of Geophysical Research: Atmospheres, 101, 10351-10363(1996).

    [81] Burrage M D, Skinner W R, Gell D A et al. Validation of mesosphere and lower thermosphere winds from the high resolution Doppler imager on UARS[J]. Journal of Geophysical Research: Atmospheres, 101, 10365-10392(1996).

    [82] Marsh D R, Skinner W R, Marshall A R et al. High resolution Doppler imager observations of ozone in the mesosphere and lower thermosphere[J]. Journal of Geophysical Research: Atmospheres, 107, ACH 7-1-ACH 7-12(2002).

    [83] Killeen T L, Skinner W R, Johnson R M et al. TIMED Doppler interferometer (TIDI)[J]. Proceedings of SPIE, 3756, 289-301(1999).

    [84] Yee J H, Talaat E R, Christensen A B et al. TIMED instruments[J]. Johns Hopkins APL Technical Digest, 24, 156-164(2003).

    [85] Wu Q, Gablehouse R D, Gell D A et al. Wind measurements by the TIMED Doppler interferometer (TIDI)[C], SA52B-02(2002).

    [86] Killeen T L, Wu Q, Solomon S C et al. TIMED Doppler Interferometer: overview and recent results[J]. Journal of Geophysical Research: Space Physics, 111, A10S01(2006).

    [87] Englert C R, Harlander J M, Babcock D D et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. Proceedings of SPIE, 6303, 63030T(2006).

    [88] Harlander J M, Englert C R, Babcock D D et al. Laboratory and field tests of a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for thermospheric wind observations[C], FWB2(2011).

    [89] Englert C R, Harlander J M, Brown C M et al. Coincident thermospheric wind measurements using ground-based Doppler Asymmetric Spatial Heterodyne (DASH) and Fabry-Perot Interferometer (FPI) instruments[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 86, 92-98(2012).

    [90] Englert C R, Brown C M, Marr K D et al. As-built specifications of MIGHTI-the thermospheric wind and temperature instrument for the NASA ICON mission[C], FTh4B. 2(2016).

    [91] Harlander J M, Englert C R, Brown C M et al. Design and laboratory tests of the Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on the ionospheric connection explorer (ICON) satellite[C], FM4A. 3(2015).

    [92] Englert C R, Harlander J M, Brown C M et al. The Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): wind and temperature observations from the ionospheric connection explorer (ICON)[C], FW1D. 3(2013).

    [93] Stevens M H, Englert C R, Harlander J M et al. Retrieval of lower thermospheric temperatures from O2 A band emission: the MIGHTI experiment on ICON[J]. Space Science Reviews, 214, 4(2018).

    [94] Solheim B, Brown S, Sioris C et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 53, 50-57(2015).

    [95] Harlander J M, Englert C R. Laboratory demonstration of mini-MIGHTI: a prototype sensor for thermospheric red-line (630 nm) neutral wind measurements from a 6U CubeSat[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105363(2020).

    [96] McHugh M J, Gordley L L, Marshall B T et al. The Doppler Wind and Temperature Sounder (DWTS): enabling next-generation weather and space weather forecasts[J]. Proceedings of SPIE, 8739, 87390U(2013).

    [97] Gordley L L, Marshall B T. Doppler wind and temperature sounder: new approach using gas filter radiometry[J]. Journal of Applied Remote Sensing, 5, 053570(2011).

    [98] Chang L C, Salinas J, Wang J C et al. A preliminary design for the INSPIRESat-1 mission and satellite bus: exploring the middle and upper atmosphere with CubeSats[EB/OL]. https://digitalcommons.usu.edu/smallsat/2016/S4LEOMis/5/

    [99] Xu G Q, Zhang Y F, Wan J W et al. Application of high-resolution three-dimensional imaging lidar[J]. Acta Optica Sinica, 41, 1628002(2021).

    Yutao Feng, Di Fu, Zengliang Zhao, Weiguo Zong, Tao Yu, Zheng Sheng, Yajun Zhu. An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011
    Download Citation