• Acta Optica Sinica
  • Vol. 43, Issue 6, 0601011 (2023)
Yutao Feng1、*, Di Fu1、2, Zengliang Zhao3, Weiguo Zong4, Tao Yu5, Zheng Sheng6, and Yajun Zhu7
Author Affiliations
  • 1Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Institute of Applied Meteorology, Beijing 100029, China
  • 4Key Laboratory of Space Weather, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
  • 5School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, Hubei, China
  • 6College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan, China
  • 7State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100088, China
  • show less
    DOI: 10.3788/AOS221462 Cite this Article Set citation alerts
    Yutao Feng, Di Fu, Zengliang Zhao, Weiguo Zong, Tao Yu, Zheng Sheng, Yajun Zhu. An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011 Copy Citation Text show less
    Schematic of spaceborne wind measurement technology based on image target movement detection
    Fig. 1. Schematic of spaceborne wind measurement technology based on image target movement detection
    Schematic of atmospheric wind detection based on Doppler frequency shift measurement
    Fig. 2. Schematic of atmospheric wind detection based on Doppler frequency shift measurement
    SEVIRI system principle[47]
    Fig. 3. SEVIRI system principle[47]
    Optical principle of the FCI[51]
    Fig. 4. Optical principle of the FCI[51]
    Optical principle of the VIIRS[52]
    Fig. 5. Optical principle of the VIIRS[52]
    AIRS optical system[67]
    Fig. 6. AIRS optical system[67]
    GIIRS optical system[68]
    Fig. 7. GIIRS optical system[68]
    Response of an interferometer to Doppler shift of an incident spectral line
    Fig. 8. Response of an interferometer to Doppler shift of an incident spectral line
    Optical system principle of the WINDII[72]
    Fig. 9. Optical system principle of the WINDII[72]
    SWIFT optical system[73]
    Fig. 10. SWIFT optical system[73]
    Schematic of PAWS system composition[22]
    Fig. 11. Schematic of PAWS system composition[22]
    HRDI optical system[78]
    Fig. 12. HRDI optical system[78]
    Field coupling fiber bundles and imaging schematic of CLIO system[83]
    Fig. 13. Field coupling fiber bundles and imaging schematic of CLIO system[83]
    MIGHTI optical system[90]
    Fig. 14. MIGHTI optical system[90]
    SWIFT-DASH interferometer (grating unglued)[94]
    Fig. 15. SWIFT-DASH interferometer (grating unglued)[94]
    Prototype of spaceborne broad-band Doppler asymmetric spatial heterodyne interferometer
    Fig. 16. Prototype of spaceborne broad-band Doppler asymmetric spatial heterodyne interferometer
    Basic principles of space-based Doppler modulation gas correlation technology[96]
    Fig. 17. Basic principles of space-based Doppler modulation gas correlation technology[96]
    Doppler wind temperature detector (DWTS) configuration based on gas correlation modulation technology[97]
    Fig. 18. Doppler wind temperature detector (DWTS) configuration based on gas correlation modulation technology[97]
    LoadSatellite and typeLaunch timeSpectral range /μmSpectral channelSubstar resolution /kmTemporal resolutionDetection range /hPa

    Wind speed accuracy /

    (m·s-1

    SEVIRI

    MSG/European

    second generation

    geostationary

    satellite

    20020.4-13.412

    1(VIS)

    3(IR)

    15 min/full disk1000-100

    -2.77-5.24(bias)

    <0.61(NRMS)

    GOES Imager

    GOES-15/US's

    second generation

    geostationary

    satellite

    20100.55-13.75

    1(VIS)

    4(IR)

    30 min/full disk--
    VISSR

    FY-2G/China's first

    generation

    geostationary

    satellite

    20140.55-12.55

    1.25(VIS)

    5(IR)

    30 min/full disk1000-150

    -3-3(bias)

    <6(RMSE)

    AGRI

    FY-4A/China's

    second generation

    geostationary

    satellite

    20160.45-13.814

    0.5-1(VIS)

    2-4(IR)

    15 min/full disk1000-150

    -2-6(bias)

    <8(RMSE)

    AHI

    Himawari-8/9/

    Japanese third

    generation

    geostationary

    satellite

    2014/20160.47-13.316

    0.5-1(VIS)

    2(IR)

    10 min/full disk1100-125

    <1(bias)

    4-6(RMSE)

    ABI

    GOES-R/US's

    second generation

    geostationary

    satellite

    20160.45-13.616

    0.5(VIS)

    1-2(IR)

    5-15 min/full disk1000-1004.31-5.2
    VIIRS

    NOAA-20/ United

    States Joint Polar

    Satellite

    20170.41-12.5220.375 or 0.75

    Global coverage

    twice/day(IR and day/night

    VIS/NIR channel)

    or once/day(VIS)

    Ground

    plane-top of

    troposphere

    4.8-6.3
    FCI

    MTG/European

    third generation

    geostationary

    satellite

    20220.3-13.316

    0.5-1(VIS)

    1-2(IR)

    10 min/Full disk1000-100

    -2.81-3.85(bias)

    <0.62(NRMS)

    AVHRR/3

    European,American

    and joint polar

    satellites

    19980.58-12.561.1

    Global coverage

    twice/day(IR)or

    once/day(VIS)

    --
    Table 1. Parameters summary of representative visible/infrared cloud imaging loads[37-45]
    LoadSatelliteLaunch timeSpectral resolution /cm-1Spectral range /cm-1Spectral channelDetection range /hPa

    Wind speed accuracy /

    (m·s-1

    Wind directionaccuracy /(°)Spatial resolution /km
    GIFTSEO-32004(airborne test only)0.57

    685-1130

    1650-2250

    18351000-400325

    1-2(vertical)

    4(horizontal)

    AIRSAqua20020.65

    649-1136

    1217-1613

    2169-2674

    23781000-2003.531413.5(horizontal)
    CRISSuomi NPP2011

    0.625

    1.25

    2.5

    650-1095

    1210-1750

    2155-2550

    13051000-1005-1014(horizontal)
    GIIRS

    FY-4A

    FY-4B

    20160.625

    700-1130

    1650-2250

    16501000-100216(horizontal)

    MISTiCTM

    Winds

    After 20221.261750-24505801000-100210

    3-4(horizontal)

    1(vertical)

    HyperCubeAfter 20221.26900-13853841000-1003-4
    Table 2. Parameters summary of representative infrared hyperspectrometer
    LoadSatelliteLaunch timeStateDetection range /kmDetection accuracyVertical resolution /kmInterferometer type
    FPIOGO-61969Fail100-400—m/s,15 K

    Spherical

    Fabry-Pérot

    interferometer

    FPIDE-21982Success80-20015 m/s10

    Planar Fabry-Pérot

    interferometer

    HRDIUARS1992

    Successful,remarkable

    application results

    10-40

    60-110

    5 m/s5

    Triple etalon

    Fabry-Pérot

    interferometer

    TIDITIMED2001

    Basic success,

    but few data

    60-3003 m/s,5-40 K2

    Fixed plane

    Fabry-Pérot

    interferometer

    WINDIIUARS1992

    Successful,remarkable

    application results

    80-3005 m/s,18-40 K4

    Four-step

    Michelson

    interferometer

    MIGHTIICON2019Success90-3005 m/s,2 K5-10

    Broad-band DASH

    interferometer

    Table 3. Parameters summary of representative spaceborne interferometer for atmospheric wind measurement
    Technical systemCloud motion vectorInfrared hyperspectralWind imaging interferometerDoppler modulated gas correlation
    Detection rangeTroposphereTroposphere

    Tropopause,stratosphere,

    mesosphere,and thermosphere

    Atratosphere,mesosphere,and thermosphere
    Wind speed accuracy0.6-6 m/s2-10 m/s3-15 m/s2-10 m/s
    Vertical resolution-1-2 km2-10 km1-2 km
    Horizontal resolution0.5-4 km3-16 km100-200 km10-200 km
    Profile continuityNo profileQuasi continuous profileContinuous profileContinuous profile
    Time coverageDay,nightDay,nightDay,nightDay,night
    Table 4. Summary of spaceborne passive optical remote sensing wind measurement techniques
    Yutao Feng, Di Fu, Zengliang Zhao, Weiguo Zong, Tao Yu, Zheng Sheng, Yajun Zhu. An Overview of Spaceborne Atmospheric Wind Field Measurement with Passive Optical Remote Sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011
    Download Citation