• Laser & Optoelectronics Progress
  • Vol. 56, Issue 22, 220001 (2019)
Kaibao Liu1、2, Xiaohong Yang1、2、*, Tingting He1、2, and Hui Wang1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100086, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP56.220001 Cite this Article Set citation alerts
    Kaibao Liu, Xiaohong Yang, Tingting He, Hui Wang. Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001 Copy Citation Text show less
    References

    [1] Levine B F, Bethea C G, Campbell J C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector[J]. Applied Physics Letters, 46, 333-335(1985).

    [2] Legré M, Thew R, Zbinden H et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module[J]. Optics Express, 15, 8237-8242(2007). http://europepmc.org/abstract/MED/19547152

    [3] Quantum communications[J]. Bulletin of the Chinese Academy of Sciences, 30, 87-90(2016).

    [4] Browell E V, Vaughan W R, Hall W M et al. Development of a high-altitude airborne dial system: the Lidar Atmospheric Sensing Experiment (LASE). [C]∥In its 13th International Laser Radar Conference 4 p (SEE N87-10263 01-35), August 11-15, 1986, Toronto, Ontario. USA: NASA(1986).

    [5] Cova S, Ghioni M, Rech I. Photon counting and timing detector modules for single-molecule spectroscopy and DNA analysis. [C]∥The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004., November 11-11, 2004, Rio Grande, Puerto Rico. New York: IEEE, 70-71(2004).

    [6] Stellari F, Song P L, Weger A J. Single photon detectors for ultra low voltage time-resolved emission measurements[J]. IEEE Journal of Quantum Electronics, 47, 841-848(2011). http://www.onacademic.com/detail/journal_1000035149320610_07c1.html

    [7] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000009000012000022000001&idtype=cvips&gifs=Yes

    [8] Buller G S, Collins R J. Single-photon generation and detection[J]. Measurement Science and Technology, 21, 012002(2010). http://www.sciencedirect.com/science/article/pii/B9780123876959000172

    [9] Eisaman M D, Fan J, Migdall A et al. Invited review article: single-photon sources and detectors[J]. Review of Scientific Instruments, 82, 071101(2011). http://scitation.aip.org/content/aip/journal/rsi/82/7/10.1063/1.3610677

    [10] Melchior H, Lynch W T. Signal. ED-[J]. noise response of high speed germanium avalanche photodiodes. IEEE Transactions on Electron Devices, 13, 829-838(1966).

    [11] Dash W C, Newman R. Intrinsic optical absorption in single-crystal germanium and silicon at 77°K and 300°K[J]. Physical Review, 99, 1151-1155(1955).

    [12] Chi N, Lu X Y, Wang C et al. High-speed visible light communication based on LED[J]. Chinese Journal of Lasers, 44, 0300001(2017).

    [13] Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 34, 0627002(2014).

    [14] Comandar L C, Fröhlich B, Dynes J F et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm[J]. Journal of Applied Physics, 117, 083109(2015).

    [15] Donnelly J P, Duerr E K. McIntosh K A, et al. Design considerations for 1.06-μm InGaAsP-InP Geiger-mode avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 42, 797-809(2006).

    [16] Itzler M A, Jiang X D, Entwistle M et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 58, 174-200(2011). http://www.tandfonline.com/doi/full/10.1080/09500340.2010.547262

    [17] Jiang X D, Itzler M A, Ben-Michael R et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 895-905(2007). http://ieeexplore.ieee.org/document/4303043/

    [18] Jiang X D, Itzler M. O’Donnell K, et al. InP-based single-photon detectors and Geiger-mode APD arrays for quantum communications applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 5-16(2015).

    [19] Jensen K E, Hopman P I, Duerr E K et al. Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 μm wavelength[J]. Applied Physics Letters, 88, 133503(2006).

    [20] Shangguan M J. Laser remote sensing with 1.5 μm single photon detectors[D]. Hefei: University of Science and Technology of China(2017).

    [21] Itzler M A, Ben-Michael R, Hsu C F et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications[J]. Journal of Modern Optics, 54, 283-304(2007). http://www.tandfonline.com/doi/abs/10.1080/09500340600792291

    [22] Liu J L. Design and performance study of single-photon detectors based on InGaAs(P)/InP PADs[D]. Jinan: Shandong University(2018).

    [23] Intermite G. McCarthy A, Warburton R E, et al. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays[J]. Optics Express, 23, 33777-33791(2015).

    [24] McIntosh K A, Donnelly J P, Oakley D C et al. . InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm[J]. Applied Physics Letters, 81, 2505-2507(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4867051

    [25] Aull B F, Loomis A H, Young D J et al. Geiger-mode avalanche photodiodes for three-dimensional imaging[J]. Lincoln Laboratory Journal, 13, 335-350(2002).

    [26] Chen C L, Yost D R, Knecht J M et al. Wafer-scale 3D integration of InGaAs image sensors with Si readout circuits. [C]∥2009 IEEE International Conference on 3D System Integration, September 28-30, 2009, San Francisco, CA, USA. New York: IEEE, 10943264(2009).

    [27] Bu Y M, Zeng Z Y, Du X P et al. Research progress of photoelectric mixing technology in laser three-dimensional imaging[J]. Laser & Optoelectronics Progress, 56, 080002(2019).

    [28] Schuette D R, Westhoff R C, Loomis A H et al. Hybridization process for back-illuminated silicon Geiger-mode avalanche photodiode arrays[J]. Proceedings of SPIE, 7681, 76810P(2010). http://spie.org/x648.xml?product_id=849356

    [29] Glettler J B, Hopman P, Verghese S et al. InP-based single-photon detector arrays with asynchronous readout integrated circuits[J]. Optical Engineering, 47, 100502(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SPIVJ1002008000001019024000001&idtype=cvips&gifs=Yes

    [30] Frechette J, Grossmann P J, Busacker D E et al. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes[J]. Proceedings of SPIE, 8375, 83750W(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.918131

    [31] Verghese S, Donnelly J P, Duerr E K et al. Arrays of InP-based avalanche photodiodes for photon counting[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 870-886(2007). http://ieeexplore.ieee.org/document/4303056/

    [32] Chau Q, Jiang X D, Itzler M A et al. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs[J]. Proceedings of SPIE, 9492, 94920O(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2177082

    [33] Younger R D, Donnelly J P, Goodhue W D et al. Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays. [C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA. New York: IEEE, 260-261(2016).

    [34] Jiang L A, Luu J X. Turbulence mitigation for coherent ladar using photon counting detector arrays. [C]∥Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, June 25-30, 2006, Whistler, Canada. Washington, D.C.: OSA, CWB6(2006).

    [35] Itzler M A, Entwistle M, Owens M et al. Comparison of 32 × 128 and 32 × 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of SPIE, 8033, 80330G(2011). http://spie.org/x648.xml?product_id=884693

    [36] Itzler M A, Entwistle M, Krishnamachari U et al. SWIR Geiger-mode APD detectors and cameras for 3D imaging[J]. Proceedings of SPIE, 9114, 91140F(2014). http://spie.org/x648.xml?product_id=2050798

    [37] Tosi A, Calandri N, Sanzaro M et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 192-197(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6847158

    [38] Calandri N, Sanzaro M, Motta L et al. Optical crosstalk in InGaAs/InP SPAD array: analysis and reduction with FIB-etched trenches[J]. IEEE Photonics Technology Letters, 28, 1767-1770(2016). http://ieeexplore.ieee.org/document/7473908/

    [39] Zhang X C, Jiang L Q, Gao X J et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays[J]. Semiconductor Optoelectronics, 36, 356-360, 391(2015).

    [40] Wu G, Zhou C Y, Chen X L et al. High performance of gated-mode single-photon detector at 1.55 μm[J]. Optics Communications, 265, 126-131(2006). http://www.sciencedirect.com/science/article/pii/S0030401806002987

    [41] Zhang J, Itzler M A, Zbinden H et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 4, e286(2015). http://www.nature.com/articles/lsa201559

    [42] Zheng L X, Yang J H, Liu Z et al. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging[J]. Proceedings of SPIE, 8907, 890744(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1737777

    [43] Zheng L X, Wu J, Zhang X C et al. Sensing detection and quenching method for InGaAs single-photon detector[J]. Acta Physica Sinica, 63, 104216(2014).

    [44] Yang J H. The design of fully integrated readout circuit based on avalanche photon diode sensor array[D]. Nanjing: Southeast University(2014).

    [45] Clifton W E, Steele B, Nelson G et al. Medium altitude airborne Geiger-mode mapping LIDAR system[J]. Proceedings of SPIE, 9465, 946506(2015).

    Kaibao Liu, Xiaohong Yang, Tingting He, Hui Wang. Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001
    Download Citation