• Photonics Research
  • Vol. 10, Issue 12, 2809 (2022)
A. Pandey, J. Min, Y. Malhotra, M. Reddeppa, Y. Xiao, Y. Wu, and Z. Mi*
Author Affiliations
  • Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    DOI: 10.1364/PRJ.473318 Cite this Article Set citation alerts
    A. Pandey, J. Min, Y. Malhotra, M. Reddeppa, Y. Xiao, Y. Wu, Z. Mi. Strain-engineered N-polar InGaN nanowires: towards high-efficiency red LEDs on the micrometer scale[J]. Photonics Research, 2022, 10(12): 2809 Copy Citation Text show less
    References

    [1] M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, M. Krames. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys., 87, 3497-3504(2000).

    [2] J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, S. P. DenBaars. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl. Phys. Lett., 116, 071102(2020).

    [3] A. Pandey, Y. Malhotra, P. Wang, K. Sun, X. Liu, Z. Mi. N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs. Photon. Res., 10, 1107-1116(2022).

    [4] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, P. Wang, Y. Wu, K. Sun, Z. Mi. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs. Photon. Res., 10, 587-593(2022).

    [5] M. Minami, S. Tomiya, K. Ishikawa, R. Matsumoto, S. Chen, M. Fukasawa, F. Uesawa, M. Sekine, M. Hori, T. Tatsumi. Analysis of GaN damage induced by Cl2/SiCl4/Ar plasma. Jpn. J. Appl. Phys., 50, 08JE03(2011).

    [6] Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, H. J. Lee. High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes. J. Appl. Phys., 92, 1189-1194(2002).

    [7] I. Ho, G. B. Stringfellow. Solid phase immiscibility in GaInN. Appl. Phys. Lett., 69, 2701-2703(1996).

    [8] T. Langer, A. Kruse, F. A. Ketzer, A. Schwiegel, L. Hoffmann, H. Jönen, H. Bremers, U. Rossow, A. Hangleiter. Origin of the ‘green gap’: increasing nonradiative recombination in indium-rich GaInN/GaN quantum well structures. Phys. Status Solidi C, 8, 2170-2172(2011).

    [9] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. A. H. Amano, I. A. I. Akasaki. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys., 36, L382(1997).

    [10] S. S. Pasayat, C. Gupta, M. S. Wong, Y. Wang, S. Nakamura, S. P. Denbaars, S. Keller, U. K. Mishra. Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates. Appl. Phys. Lett., 116, 111101(2020).

    [11] S. S. Pasayat, R. Ley, C. Gupta, M. S. Wong, C. Lynsky, Y. Wang, M. J. Gordon, S. Nakamura, S. P. Denbaars, S. Keller, U. K. Mishra. Color-tunable <10 μm square InGaN micro-LEDs on compliant GaN-on-porous-GaN pseudo-substrates. Appl. Phys. Lett., 117, 061105(2020).

    [12] S. Keller, S. S. Pasayat, C. Gupta, S. P. DenBaars, S. Nakamura, U. K. Mishra. Patterned III-nitrides on porous GaN: extending elastic relaxation from the nano- to the micrometer scale. Phys. Status Solidi (RRL), 15, 2100234(2021).

    [13] S. S. Pasayat, C. Gupta, M. S. Wong, R. Ley, M. J. Gordon, S. P. DenBaars, S. Nakamura, S. Keller, U. K. Mishra. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl. Phys. Express, 14, 011004(2020).

    [14] S. Zhang, J. Zhang, J. Gao, X. Wang, C. Zheng, M. Zhang, X. Wu, L. Xu, J. Ding, Z. Quan, F. Jiang. Efficient emission of InGaN-based light-emitting diodes: toward orange and red. Photonics Res., 8, 1671-1675(2020).

    [15] W. Yao, L. Wang, Y. Meng, S. Yang, X. Liu, H. Niu, Z. Wang. Stress engineering for reducing the injection current induced blue shift in InGaN-based red light-emitting diodes. CrystEngComm, 23, 2360-2366(2021).

    [16] R. Vadivelu, Y. Igawa, K. Kishino. 633 nm red emissions from InGaN nanocolumn light-emitting diode by radio frequency plasma assisted molecular beam epitaxy. Jpn. J. Appl. Phys., 52, 08JE18(2013).

    [17] P. Feng, C. Xu, J. Bai, C. Zhu, I. Farrer, G. Martinez de Arriba, T. Wang. A simple approach to achieving ultrasmall III-nitride microlight-emitting diodes with red emission. ACS Appl. Electron. Mater., 4, 2787-2792(2022).

    [18] B. Jenichen, O. Brandt, C. Pfüller, P. Dogan, M. Knelangen, A. Trampert. Macro-and micro-strain in GaN nanowires on Si (111). Nanotechnol., 22, 295714(2011).

    [19] F. Glas. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B, 74, 121302(2006).

    [20] P. Chan, V. Rienzi, N. Lim, H.-M. Chang, M. Gordon, S. P. DenBaars, S. Nakamura. Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Appl. Phys. Express, 14, 101002(2021).

    [21] P. Li, H. Li, H. Zhang, Y. Yang, M. S. Wong, C. Lynsky, M. Iza, M. J. Gordon, J. S. Speck, S. Nakamura, S. P. DenBaars. Red InGaN micro-light-emitting diodes (> 620 nm) with a peak external quantum efficiency of 4.5% using an epitaxial tunnel junction contact. Appl. Phys. Lett., 120, 121102(2022).

    [22] K. Kishino, S. Ishizawa. Selective-area growth of GaN nanocolumns on Si (111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnol., 26, 225602(2015).

    [23] S. Jahangir, M. Mandl, M. Strassburg, P. Bhattacharya. Molecular beam epitaxial growth and optical properties of red-emitting (λ = 650 nm) InGaN/GaN disks-in-nanowires on silicon. Appl. Phys. Lett., 102, 071101(2013).

    [24] A. Kikuchi, M. Tada, K. Miwa, K. Kishino. Growth and characterization of InGaN/GaN nanocolumn LED. Proc. SPIE, 6129, 612905(2006).

    [25] W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett., 10, 3355-3359(2010).

    [26] D.-H. Lee, J.-H. Lee, J.-S. Park, T.-Y. Seong, H. Amano. Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation. ECS J. Solid State Sci. Technol., 9, 055001(2020).

    [27] M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, S. H. Christiansen. Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation. Nanotechnol., 28, 055201(2016).

    [28] G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, G. Du. Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer. J. Mater. Sci.: Mater. Electron., 29, 9321-9325(2018).

    [29] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, S. Rajan. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett., 100, 111118(2012).

    [30] S. Keller, N. A. Fichtenbaum, M. Furukawa, J. S. Speck, S. P. DenBaars, U. K. Mishra. Growth and characterization of N-polar InGaN/GaN multiquantum wells. Appl. Phys. Lett., 90, 191908(2007).

    [31] D. N. Nath, E. Gür, S. A. Ringel, S. Rajan. Molecular beam epitaxy of N-polar InGaN. Appl. Phys. Lett., 97, 071903(2010).

    [32] F. Tuomisto, K. Saarinen, B. Lucznik, I. Grzegory, H. Teisseyre, T. Suski, S. Porowski, P. R. Hageman, J. Likonen. Effect of growth polarity on vacancy defect and impurity incorporation in dislocation-free GaN. Appl. Phys. Lett., 86, 031915(2005).

    [33] C. Chéze, M. Siekacz, G. Muzioł, H. Turski, S. Grzanka, M. Kryśko, J. L. Weyher, M. Boćkowski, C. Hauswald, J. Lähnemann, O. Brandt, M. Albrecht, C. Skierbiszewski. Investigation on the origin of luminescence quenching in N-polar (In,Ga)N multiple quantum wells. J. Vac. Sci. Technol. B, 31, 03C130(2013).

    [34] T. Kehagias, G. Dimitrakopulos, P. Becker, J. Kioseoglou, F. Furtmayr, T. Koukoula, I. Häusler, A. Chernikov, S. Chatterjee, T. Karakostas. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires. Nanotechnol., 24, 435702(2013).

    [35] O. Landré, D. Camacho, C. Bougerol, Y.-M. Niquet, V. Favre-Nicolin, G. Renaud, H. Renevier, B. Daudin. Elastic strain relaxation in GaN/AlN nanowire superlattice. Phys. Rev. B, 81, 153306(2010).

    [36] N. A. K. Kaufmann, A. Dussaigne, D. Martin, P. Valvin, T. Guillet, B. Gil, F. Ivaldi, S. Kret, N. Grandjean. Thermal annealing of molecular beam epitaxy-grown InGaN/GaN single quantum well. Semicond. Sci. Technol., 27, 105023(2012).

    [37] X. Zhang, H. Lourenço-Martins, S. Meuret, M. Kociak, B. Haas, J.-L. Rouvière, P.-H. Jouneau, C. Bougerol, T. Auzelle, D. Jalabert, X. Biquard, B. Gayral, B. Daudin. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnol., 27, 195704(2016).

    [38] C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, B. S. Ooi. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett., 16, 1056-1063(2016).

    [39] G. Tourbot, C. Bougerol, F. Glas, L. F. Zagonel, Z. Mahfoud, S. Meuret, P. Gilet, M. Kociak, B. Gayral, B. Daudin. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnol., 23, 135703(2012).

    [40] B. Park, J. K. Lee, C. T. Koch, M. Wölz, L. Geelhaar, S. H. Oh. High‐resolution mapping of strain partitioning and relaxation in InGaN/GaN nanowire heterostructures. Adv. Sci., 9, 2200323(2022).

    [41] H. C. Kuo, T. S. Oh, P.-C. Ku. MOCVD growth of vertically aligned InGaN nanowires. J. Cryst. Growth, 370, 311-313(2013).

    [42] Y.-H. Ra, R. Navamathavan, C.-R. Lee. Growth characteristics of uniaxial InGaN/GaN MQW/n-GaN nanowires on Si (111) using MOCVD. CrystEngComm, 14, 8208-8214(2012).

    [43] H. P. T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, Z. Mi. Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett., 12, 1317-1323(2012).

    [44] B. H. Le, S. Zhao, X. Liu, S. Y. Woo, G. A. Botton, Z. Mi. Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv. Mater., 28, 8446-8454(2016).

    [45] Y.-K. Kuo, Y.-A. Chang. Effects of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum-well laser performance. IEEE J. Quantum Electron., 40, 437-444(2004).

    [46] R. Charash, P. P. Maaskant, L. Lewis, C. McAleese, M. J. Kappers, C. J. Humphreys, B. Corbett. Carrier distribution in InGaN/GaN tricolor multiple quantum well light emitting diodes. Appl. Phys. Lett., 95, 151103(2009).

    [47] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli. Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B, 60, 8849-8858(1999).

    [48] O. Mayrock, H.-J. Wünsche, F. Henneberger. Polarization charge screening and indium surface segregation in (In,Ga)N/GaN single and multiple quantum wells. Phys. Rev. B, 62, 16870-16880(2000).

    [49] J. Zhang, N. Tansu. Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes. J. Appl. Phys., 110, 113110(2011).

    [50] A. Dussaigne, F. Barbier, B. Samuel, A. Even, R. Templier, F. Lévy, O. Ledoux, M. Rozhavskaia, D. Sotta. Strongly reduced V pit density on InGaNOS substrate by using InGaN/GaN superlattice. J. Cryst. Growth, 533, 125481(2020).

    [51] J. Däubler, T. Passow, R. Aidam, K. Köhler, L. Kirste, M. Kunzer, J. Wagner. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter. Appl. Phys. Lett., 105, 111111(2014).

    [52] K. Hestroffer, F. Wu, H. Li, C. Lund, S. Keller, J. S. Speck, U. K. Mishra. Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells. Semicond. Sci. Technol., 30, 105015(2015).

    [53] W. Li, P. Bergman, I. Ivanov, W.-X. Ni, H. Amano, I. Akasa. High-resolution X-ray analysis of InGaN/GaN superlattices grown on sapphire substrates with GaN layers. Appl. Phys. Lett., 69, 3390-3392(1996).

    [54] S. J. Leem, Y. C. Shin, K. C. Kim, E. H. Kim, Y. M. Sung, Y. Moon, S. M. Hwang, T. G. Kim. The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers. J. Cryst. Growth, 311, 103-106(2008).

    A. Pandey, J. Min, Y. Malhotra, M. Reddeppa, Y. Xiao, Y. Wu, Z. Mi. Strain-engineered N-polar InGaN nanowires: towards high-efficiency red LEDs on the micrometer scale[J]. Photonics Research, 2022, 10(12): 2809
    Download Citation