• Journal of Semiconductors
  • Vol. 44, Issue 2, 023105 (2023)
Jingjing Wang1, Baozheng Xu1, Yinfang Zhu2、*, and Junyuan Zhao2、**
Author Affiliations
  • 1School of Electronic and Information Engineering, Tiangong University, Tianjin 300380, China
  • 2Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/44/2/023105 Cite this Article
    Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. Microcantilever sensors for biochemical detection[J]. Journal of Semiconductors, 2023, 44(2): 023105 Copy Citation Text show less
    References

    [1] J Mouro, R Pinto, P Paoletti et al. Microcantilever: Dynamical response for mass sensing and fluid characterization. Sensors, 21, 115(2020).

    [2] R P Peng, B Chen, H F Ji et al. Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, 137, 1220(2012).

    [3] C Ricciardi, I Ferrante, R Castagna et al. Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron, 40, 407(2013).

    [4] C G Xue, H W Zhao, H Liu et al. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens Actuat B, 156, 863(2011).

    [5] E Biavardi, S Federici, C Tudisco et al. Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew Chem Int Ed, 53, 9183(2014).

    [6] C Ricciardi, S Fiorilli, S Bianco et al. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. Biosens Bioelectron, 25, 1193(2010).

    [7] G Oliviero, M Chiari, E De Lorenzi et al. Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sens Actuat B, 176, 1026(2013).

    [8] F Huber, H P Lang, K Glatz et al. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett, 16, 5373(2016).

    [9] N Maloney, G Lukacs, J Jensen et al. Nanomechanical sensors for single microbial cell growth monitoring. Nanoscale, 6, 8242(2014).

    [10] H H Kim, H J Jeon, H K Cho et al. Highly sensitive microcantilever sensors with enhanced sensitivity for detection of human papilloma virus infection. Sens Actuat B, 221, 1372(2015).

    [11] U Rabe, K Janser, W Arnold. Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum, 67, 3281(1996).

    [12] K S Hwang, K Eom, J H Lee et al. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl Phys Lett, 89, 173905(2006).

    [13] U Dammer, er M Hegner, D Anselmetti et al. Specific antigen/antibody interactions measured by force microscopy. Biophys J, 70, 2437(1996).

    [14] J Fritz, M K Baller, H P Lang et al. Translating biomolecular recognition into nanomechanics. Science, 288, 316(2000).

    [15] D F Wang, X Du, X Wang et al. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers. J Micromech Microeng, 26, 015006(2016).

    [16] T Thundat, E A Wachter, S L Sharp et al. Detection of mercury vapor using resonating microcantilevers. Appl Phys Lett, 66, 1695(1995).

    [17] D Ramos, J Tamayo, J Mertens et al. Origin of the response of nanomechanical resonators to bacteria adsorption. J Appl Phys, 100, 106105(2006).

    [18] N Nugaeva, K Y Gfeller, N Backmann et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron, 21, 849(2005).

    [19] M G von Muhlen, N D Brault, S M Knudsen et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem, 82, 1905(2010).

    [20] V Seena, A Fernandes, P Pant et al. Polymer nanocomposite nanomechanical cantilever sensors: Material characterization, device development and application in explosive vapour detection. Nanotechnology, 22, 295501(2011).

    [21] L A Pinnaduwage, J E Hawk, V Boiadjiev et al. Use of microcantilevers for the monitoring of molecular binding to self-assembled monolayers. Langmuir, 19, 7841(2003).

    [22] L Senesac, T G Thundat. Nanosensors for trace explosive detection. Mater Today, 11, 28(2008).

    [23] K S Hwang, S M Lee, S K Kim et al. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem, 2, 77(2009).

    [24] Y Chen, P C Xu, X X Li. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology, 21, 265501(2010).

    [25] J Zhou, P Li, S Zhang et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sens Actuat B, 94, 337(2003).

    [26] A Kooser, R L Gunter, W D Delinger et al. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuat B, 99, 474(2004).

    [27] T L Porter, T L Vail, M P Eastman et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuat B, 123, 313(2007).

    [28] L A Pinnaduwage, T Thundat, J E Hawk et al. Detection of 2, 4-dinitrotoluene using microcantilever sensors. Sens Actuat B, 99, 223(2004).

    [29] J Kong, M G Chapline, H Dai. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater, 13, 1384(2001).

    [30] T H Kim, B Y Lee, J Jaworski et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano, 5, 2824(2011).

    [31] Z F Kuang, S N Kim, W J Crookes-Goodson et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano, 4, 452(2010).

    [32] W Z Ruan, Y C Li, Z M Tan et al. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens Actuat B, 176, 141(2013).

    [33] M Rahimi, I Chae, E J Hawk et al. Methane sensing at room temperature using photothermal cantilever deflection spectroscopy. Sens Actuat B, 221, 564(2015).

    [34] G Longo, L Alonso-Sarduy, L M Rio et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol, 8, 522(2013).

    [35] H Etayash, M F Khan, K Kaur et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 7, 12947(2016).

    [36] G Shekhawat, S H Tark, V P Dravid. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 311, 1592(2006).

    [37] E Timurdogan, B E Alaca, I H Kavakli et al. MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron, 28, 189(2011).

    [38] X C Liu, L H Wang, J Y Zhao et al. Enhanced binding efficiency of microcantilever biosensor for the detection of yersinia. Sensors, 19, 3326(2019).

    [39] S P Wang, J J Wang, Y F Zhu et al. A new device for liver cancer biomarker detection with high accuracy. Sens Bio Sens Res, 4, 40(2015).

    [40] J J Wang, S P Wang, X Wang et al. Cantilever array sensor for multiple liver cancer biomarkers detection. 2014 IEEE SENSORS, 343(2014).

    [41] J Zhang, H P Lang, F Huber et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol, 1, 214(2006).

    [42] J Mertens, C Rogero, M Calleja et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 3, 301(2008).

    [43] M Z Ansari, C Cho. A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors, 8, 7530(2008).

    [44] M Z Ansari, C Cho. Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors, 9, 6046(2009).

    [45] M Z Ansari, C Cho, J Kim et al. Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors, 9, 2706(2009).

    [46] Y Liu, H Wang, H Qin et al. Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater, 29, 689(2017).

    [47] H F Hawari, Y Wahab, M T Azmi et al. Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys: Conf Ser, 495, 012045(2014).

    [48] Y C Lim, A Z Kouzani, W Duan et al. Effects of design parameters on sensitivity of microcantilever biosensors. IEEE/ICME International Conference on Complex Medical Engineering, 177(2010).

    [49] R Zhao, W Ma, Y Wen et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sens Actuat B, 212, 112(2015).

    [50] D S Kim, Y J Jeong, B K Lee et al. Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens Actuat B, 240, 566(2017).

    [51] R Zhao, Y Sun. Polymeric flexible immunosensor based on piezoresistive micro-cantilever with PEDOT/PSS conductive layer. Sensors, 18, 451(2018).

    [52] K W Li, Y K. Yen. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor. Biosens Bioelectron, 130, 420(2019).

    [53] F J Zheng, P X Wang, Q F Du et al. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem, 7, 232(2019).

    [54] L H Wang, D Y Fu, X C Liu et al. Highly sensitive biosensor based on a microcantilever and alternating current electrothermal technology. J Micromech Microeng, 31, 015009(2021).

    [55] S Leahy, Y. Lai. A cantilever biosensor exploiting electrokinetic capture to detectEscherichia coli in real time. Sens Actuat B, 238, 292(2017).

    [56] A Boisen, T. Thundat. Design & fabrication of cantilever array biosensors. Mater Today, 12, 32(2009).

    [57] X L Feng, C J White, A Hajimiri et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat Nanotechnol, 3, 342(2008).

    [58] K L Ekinci, Y T Yang, M L Roukes. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys, 95, 2682(2004).

    [59] J R Vig, Y Kim. Noise in microelectromechanical system resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 46, 1558(1999).

    [60] J W Meng, S J Tang, L Sun et al. Dissipative acousto-optic interactions in optical microcavities. Phys Rev Lett, 9, 7(2022).

    [61] W Kim, T Kouh. Simple optical knife-edge effect based motion detection approach for a microcantilever. Appl Phys Lett, 116, 163104(2020).

    Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. Microcantilever sensors for biochemical detection[J]. Journal of Semiconductors, 2023, 44(2): 023105
    Download Citation