• Photonics Research
  • Vol. 12, Issue 3, 505 (2024)
Xilai Zhang1、†, Dan Zhao2、†, Ding Zhang1, Qiang Xue1、3, Fei Fan2、4, Yulong Liao1, Qinghui Yang1, and Qiye Wen1、3、*
Author Affiliations
  • 1School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 3Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
  • 4e-mail: fanfei_gdz@126.com
  • show less
    DOI: 10.1364/PRJ.509876 Cite this Article Set citation alerts
    Xilai Zhang, Dan Zhao, Ding Zhang, Qiang Xue, Fei Fan, Yulong Liao, Qinghui Yang, Qiye Wen. Wafer-level substrate-free YIG single crystal film for a broadband tunable terahertz isolator[J]. Photonics Research, 2024, 12(3): 505 Copy Citation Text show less
    References

    [1] Y. Peng, J. L. Huang, J. Luo. Three-step one-way model in terahertz biomedical detection. PhotoniX, 2, 12(2021).

    [2] A. Dobroiu, C. Otani, K. Kawase. Terahertz-wave sources and imaging applications. Meas. Sci. Technol., 17, R161-R174(2006).

    [3] N. Horiuchi. Terahertz surprises. Nat. Photonics., 12, 128-130(2018).

    [4] S. Ummethala, T. Harter, K. Koehnle. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics., 13, 519-524(2019).

    [5] B. Ferguson, X. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [6] J. Poumirol, P. Liu, T. Slipchenko. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun., 8, 14626(2017).

    [7] D. Jalas, A. Petrov, M. Eich. What is—and what is not—an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [8] F. Fan, D. Zhao, Z. Y. Tan. Magnetically induced terahertz birefringence and chirality manipulation in transverse‐magnetized metasurface. Adv. Opt. Mater., 9, 2101097(2021).

    [9] M. Shalaby, Y. Ozturk, M. Clerici. Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid. Appl. Phys. Lett., 100, 241107(2012).

    [10] M. Shalaby, M. Peccianti, Y. Ozturk. A magnetic non-reciprocal isolator for broadband terahertz operation. Nat. Commun., 4, 1558(2013).

    [11] S. Chen, F. Fan, S. J. Chang. Tunable optical and magneto-optical properties of ferrofluid in the terahertz regime. Opt. Express, 22, 6313-6321(2014).

    [12] M. Shalaby, M. Peccianti, Y. Ozturk. Terahertz magnetic modulator based on magnetically clustered nanoparticles. Appl. Phys. Lett., 105, 151108(2014).

    [13] M. Tamagnone, C. Moldovan, J.-M. Poumirol. Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun., 7, 11216(2016).

    [14] D. Zhao, F. Fan, Z. Y. Tan. Tunable on-chip terahertz isolator based on nonreciprocal transverse edge spin state of asymmetric magneto-plasmonic waveguide. Laser Photon. Rev., 17, 2200509(2023).

    [15] A. N. Grebenchukov, V. I. Ivanova, G. I. Kropotov. Terahertz Faraday rotation of aluminum-substituted barium hexaferrite. Appl. Phys. Lett., 118, 191104(2021).

    [16] I. I. Syvorotka, I. M. Syvorotka, S. B. Ubizskii. Thick epitaxial YIG films with narrow FMR linewidth. Solid State Phenom., 200, 250-255(2013).

    [17] J. H. Yang, F. Zhang, Y. Xu. A theoretical study of the magnetic and magneto-optical properties of the Pr-substituted YIG. IEEE Trans. Magn., 33, 3259-3261(1997).

    [18] Y. H. Rao, H. W. Zhang, Q. H. Yang. Liquid phase epitaxy magnetic garnet films and their applications. Chin. Phys. B, 27, 086701(2018).

    [19] C. Dubs, O. Surzhenko, R. Linke. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. J. Phys. D, 50, 204005(2017).

    [20] Z. Y. Han, D. L. Sun, H. L. Zhang. Investigation on the growth and properties of six garnet single crystals with large lattice constants. Cryst. Res. Technol., 56, 2000221(2021).

    [21] Y. L. Li, T. F. Li, Q. Y. Wen. Terahertz magneto-optical effect of wafer-scale La:yttrium iron garnet single-crystal film with low loss and high permittivity. Opt. Express, 28, 21062-21071(2020).

    [22] M. Sabbaghi, G. W. Hanson, M. Weinert. Terahertz response of gadolinium gallium garnet (GGG) and gadolinium scandium gallium garnet (SGGG). J. Appl. Phys., 127, 025104(2020).

    [23] S. Chen, F. Fan, X. H. Wang. Terahertz isolator based on nonreciprocal magneto-metasurface. Opt. Express, 23, 1015-1024(2015).

    [24] W. Tolksdorf, G. Bartels, P. Holst. Dependence of lattice parameter on composition in substituted yttrium iron garnet epitaxial layers. J. Cryst. Growth, 26, 122-126(1974).

    [25] D. Zhao, F. Fan, Q. Y. Wen. Terahertz phase shift of circularly polarized wave and faraday rotation in magnetized YIG crystal. IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3(2022).

    [26] T. M. Li, C. P. Yin, F. Wu. Giant enhancement of Faraday rotation in Weyl semimetal assisted by optical Tamm state. Phys. Lett. A, 437, 128103(2022).

    [27] S. M. Hamidi, M. M. Tehranchi. High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides. J. Lightwave Technol., 28, 2139-2145(2010).

    [28] M. J. Steel, M. Levy, R. M. Osgood. High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects. IEEE Photon. Technol. Lett., 12, 1171-1173(2000).

    Xilai Zhang, Dan Zhao, Ding Zhang, Qiang Xue, Fei Fan, Yulong Liao, Qinghui Yang, Qiye Wen. Wafer-level substrate-free YIG single crystal film for a broadband tunable terahertz isolator[J]. Photonics Research, 2024, 12(3): 505
    Download Citation